Det(Aᵗ)=Det(A)

Theorem: Let A be nxn matrix on real numbers, then

Det(Aᵗ)=Det(A)

Proof: Let e be any elementary row operation on nxn matrices. Then, define e’ to be analogous column operation on nxn matrices. What do we mean by the word “analogous” here? Well, let’s say e multiplies r’th row by c and adds it to s’th row. Then, e’ multiplies r’th column by c and adds it to s’th column. If e multiplies r’th row by c that isn’t zero, then e’ multiplies r’th row by c. Then, there are some interesting consequences from this definition.

Proposition-1: Let A be an nxn matrix on real numbers. Also, let e be any elementary row operation. Finally, define e’ to be analogous column operation as defined above. Then,

(e(A))t=e'(Aᵗ)

Proof:

ero-1: Let

(e(A))(i,j)={ A(i,j) if i≠r ; c*A(s,j)+A(i,j) if i=r}

then

(e(A))t(j,i)={ A(i,j) if i≠r ; c*A(s,j)+A(i,j) if i=r}

also

(A)t(j,i)={A(i,j)}

(e'(A)t)(j,i)={At(j,i) if i≠r ; c*At(j,s)+At(j,i) if i=r}

this equality becomes,

(e'(A)t)(j,i)={A(i,j) if i≠r ; c*A(s,j)+A(i,j) if i=r}

ero-2: Let

(e(A))(i,j)={ A(i,j) if i≠r ; c*A(i,j) if i=r and c≠0}

then

(e(A))t(j,i)={ A(i,j) if i≠r ; c*A(i,j) if i=r and c≠0}

also

(A)t(j,i)={A(i,j)}

(e'(A)t)(j,i)={At(j,i) if i≠r ; c*At(j,i) if i=r and c≠0}

this equality becomes,

(e'(A)t)(j,i)={A(i,j) if i≠r ; c*A(i,j) if i=r and c≠0 }

ero-3: Let

(e(A))(i,j)={ A(i,j) if i≠r,s ; A(s,j) if i=r ; A(r,j) if i=s}

then

(e(A))t(j,i)={ A(i,j) if i≠r,s ; A(s,j) if i=r ; A(r,j) if i=s}

also

(A)t(j,i)={A(i,j)}

(e'(A)t)(j,i)={At(j,i) if i≠r ; At(s,i) if i=r ; At(r,i) if i=s}

this equality becomes,

(e'(A)t)(j,i)={A(i,j) if i≠r ; A(i,s) if i=r ; A(i,r) if i=s}

So, proposition is proved.

Proposition-2: Let A be any nxn matrix on real numbers. Let e be any elementary row operation. Also, let e’ be analogous column operation. Then,

e'(A)=A.(e'(I))

Proof: Let A

Leave a comment

Your email address will not be published. Required fields are marked *