M E T U Department of Mathematics

	Introduction to Differential Equations							
	MidTerm 1							
Code:Math 219Acad. Year: $2017-2018$ Semester:SpringCoordinator: $\ddot{O}zg\ddot{u}r$ KişiselDate:March.31.2018					Last Name Name Departmen Signature	: : t: :	Student No. Section	:
Duratio	1 : 120	00 0 minut	es		6 QUESTIONS ON 4 PAGES TOTAL 100 POINTS			
1 2	3	4	5	6			SHOW YOUR WORK	

Question 1 (13 pts) Find an integrating factor of the form $\mu(y) = e^{ay}$ for the equation

 $-dx + (2ye^y + x)dy = 0$

where a is a constant. Using this integrating factor, find all solutions of the equation.

Question 2 (12 pts) Verify that $y_1(t) = 1$ and $y_2(t) = (t-1)^{5/4} + 1$ are both solutions of the initial value problem

$$\frac{dy}{dt} = \frac{5}{4}(y-1)^{1/5}, \quad y(1) = 1.$$

Why does this not contradict the existence-uniqueness theorem?

Question 3 (25 pts) A ball with mass 0.5kg is thrown upward with an initial velocity 20m/s from the roof of a building 30m high. Assume that there is a force due to air resistance of |v|/20, where the velocity v is measured in m/s. Find the time at which the ball reaches the maximum height above the ground. $(g = 9.8m/s^2.)$

Question 4 (25 pts) Find the solution of the initial value problem

$$\mathbf{x}' = \begin{bmatrix} 1 & -4 \\ 5 & -3 \end{bmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{bmatrix} 2 \\ -3 \end{bmatrix}.$$

 ${\bf Question \ 5 \ (15 \ pts)} \quad {\rm Find \ all \ solutions \ of \ the \ system}$

$$\mathbf{x}' = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix} \mathbf{x}$$

$$\mathbf{v}^{(1)} = \begin{bmatrix} e^t \\ -2e^t \\ 0 \end{bmatrix}, \quad \mathbf{v}^{(2)} = \begin{bmatrix} 2e^t \\ 0 \\ -4e^t \end{bmatrix}, \quad \mathbf{v}^{(3)} = \begin{bmatrix} -e^t \\ 4e^t \\ e^t \end{bmatrix}.$$