
MATH 219
Fall 2020

Lecture 4

Lecture notes by Özgür Kişisel

Content: Differences between linear and nonlinear equations (section 2.4)).

Suggested Problems: (Boyce, Di Prima, 9th edition)

§2.4: 1, 3, 5, 6, 8, 10, 12, 14, 16, 23, 27, 30

Recall that a first order ODE is called linear if it can be written in the form

dy

dt
+ p(t)y = q(t)

for some functions p(t) and q(t). This definition does not give us much insight about
the adjective “linear”; it doesn’t tell us much about distinguishing features of linear
equations. In this lecture we will study linear equations and non-linear equations
from a more theoretical point of view. The characteristic feature of linear equations
is the principle of superposition, which we discuss first. Afterwards, we investigate
the existence and uniqueness of solutions for initial value problems. There are
some subtle differences between linear and non-linear equations in this respect. The
possibility of finite time blow-up for non-linear equations is the most notable of
these differences. We conclude the lecture by stating some other differences between
linear and nonlinear equations.

1 Principle of Superposition

The characteristic feature of linear equations is that one can combine some given
solutions in order to produce new solutions.

Definition 1.1 Say f1, · · · , fn are functions of t. A function of the form f = c1f1+
c2f2 + · · · + cnfn, where c1, · · · , cn are constants, is called a linear combination
of f1, · · · , fn. If furthermore c1 + · · · + cn = 1, then f is called an affine linear
combination of f1, · · · , fn.
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Proposition 1.1 Suppose that f1, f2, · · · , fn are solutions of the first order linear
equation y′ + p(t)y = q(t). Then any affine linear combination of f1, · · · , fn is also
a solution. If furthermore q(t) is the zero function, then any linear combination is
a solution.

Proof: Since f1, · · · , fn are solutions, we have

f ′1 + p(t)f1 = q(t)

f ′2 + p(t)f2 = q(t)

· · ·
f ′n + p(t)fn = q(t)

We multiply the first equation by c1, second equation by c2, ... , the nth equation
by cn and add them up. We get

(c1f1 + · · ·+ cnfn)′ + p(t)(c1f1 + · · ·+ cnfn) = (c1 + · · ·+ cn)q(t).

Therefore, if c1+· · ·+cn = 1 then the right hand side becomes q(t) and consequently
f = c1f1 + · · · + cnfn is a solution of the equation. If q(t) = 0, then the value of
c1 + · · · + cn doesn’t matter and any linear combination of f1, · · · , fn is a solution.
�

The theorem above describes us precisely in which sense combinations of solutions of
linear equations are again solutions. This is called the principle of superposition.

Example 1.1 The principle of superposition fails in general for non-linear equa-
tions. For instance, consider the nonlinear ODE y′ = y2. It is separable and we can
solve it as follows: ∫

dy

y2
=

∫
dt

−1

y
= t+ c

y(t) = − 1

t+ c

But a linear combination of two solutions of this form is almost never in the same
form, therefore it will almost never be a solution. For instance, −1

t
and − 1

t−1 are
solutions. But

−c1
1

t
− c2

1

t− 1
= −(c1 + c2)t− c1

t(t− 1)
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is not a solution (unless c1 = 0, c2 = 1 or c1 = 1, c2 = 0, but these are very special
cases).

2 Existence and Uniqueness Theorems

A first order ODE typically has infinitely many solutions because of the constant
c appearing in the solution. Our experience so far is that if an additional initial
condition y(t0) = y0 is given then the constant and therefore the solution is uniquely
determined. One can ask whether this is always the case. The answer to this
question is given by the existence-uniqueness theorem. Let us begin investigating
this problem starting from the case of linear equations.

Theorem 2.1 Suppose that we have an initial value problem y′ + p(t)y = q(t) and
y(t0) = y0 where the functions p(t), q(t) are continuous on an open interval (a, b)
and t0 ∈ (a, b). Then this initial value problem has a unique solution y(t) which is
valid over (at least) the whole open interval (a, b).

Remark 2.1 It is possible that a = −∞, b = +∞ or both.

Proof: We already derived a formula for the general solution of a first order linear
equation in section 2:

y =

∫
µ(t)q(t)dt

µ(t)

where µ(t) = e
∫
p(t)dt. If p(t) and q(t) are both continuous on (a, b) then they are

integrable. Same holds for µ(t). Also, µ(t) 6= 0 since it is an exponential function; so
division by µ(t) does not cause a problem. Therefore y(t) is defined for all t ∈ (a, b).
What about the constant? Suppose that F (t) is one of the antiderivatives of µ(t)q(t).
Then we can rewrite the solution as

y =
F (t) + c

µ(t)

If we put y(t0) = y0 then we see that c = µ(t0)y0 − F (t0), therefore it is uniquely
determined by the initial condition. Hence the solution is unique. �
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Now, let us look at the case of non-linear equations. An arbitrary first order equation
(linear or non-linear) can be written in the form

dy

dt
= f(t, y)

provided that we can isolate the term dy
dt

in the equation by using some algebraic
operations. We will assume that this can indeed be done and work with equations
in the form above. Notice that if the equation is linear then f(t, y) = q(t)− p(t)y.

The first thing to think about regarding the existence-uniqueness theorem for the
non-linear case, is its statement. In general, it will be impossible to decompose
f(t, y) in the form q(t)− p(t)y or in any reasonable simple form. In the linear case,
the continuity of p(t) and q(t) implies the continuity of the two variable function
f(t, y). However, it implies more than just that: Notice that ∂f

∂y
= −p(t). Therefore

the continuity of p(t) in the linear case is equivalent to the continuity of ∂f
∂y

. This
gives a good idea about a possible correct formulation in the non-linear case:

Theorem 2.2 Suppose that we have an initial value problem y′ = f(t, y) and
y(t0) = y0 where f(t, y) and ∂f

∂y
are both continuous on an open rectangle (a, b)×(c, d)

containing (t0, y0). Then there exists a unique solution of this initial value problem,
defined possibly for t belonging to a smaller subinterval of (a, b).

Since f and ∂f
∂y

are functions of two variables, it is necessary to check continuity on
an open rectangle containing the initial point, rather than on an interval. An actual
rectangle is not absolutely necessary, any open set containing the initial point would
do the same job. The proof of this theorem requires a knowledge of some important
facts from mathematical analysis, and it is beyond the scope of these lectures. The
phrase “possibly smaller subinterval” at the end of the statement is related to the
notion of “finite time blow-up”. This will be explained in detail in the next section.

Example 2.1 We want to see that the condition ∂f
∂y

really plays an important role
in the theorem and cannot be entirely discarded. For this purpose, consider the ODE

y′ = y1/3

together with the initial condition y(0) = 0. Then f(t, y) = y1/3 is continuous
everywhere, however ∂f

∂y
= 1

3
y−2/3 is not continous on the line y = 0. This line
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contains the initial point (0, 0), so the conditions of the existence-uniqueness theorem
are not satisfied here. Let us indeed see that there are multiple solutions to this initial
value problem. The equation is separable:∫

dy

y1/3
=

∫
dt

3

2
y2/3 = t+ c

y = ±
(

2

3
(t+ c)

)3/2

The condition y(0) = 0 gives c = 0. But there are still at least two solutions of the
initial value problem, namely

y1(t) =

{
(2
3
t)3/2, t ≥ 0

0, t < 0
, y2(t) =

{
−(2

3
t)3/2, t ≥ 0

0, t < 0

Also, in the derivation we assumed that y 6= 0. The function y3 = 0 is yet a third
solution. (In fact, literally speaking, one can construct infinitely many solutions to
this initial value problem. Can you see how?)

3 Finite Time Blow-up

In the previous section it was mentioned that the domain of the solution of a non-
linear initial value problem may not extend to the largest interval on which the
relevant functions are continuous. This phenomenon is called finite time blow-up,
and is especially disturbing in any theoretical or practical consideration of differential
equations. Let us see that this can indeed happen, by looking at an example.

Example 3.1 Consider the non-linear ODE y′ = y2 together with the initial con-
dition y(0) = y0 > 0. We obtained the general solution to this ODE to be

y(t) = − 1

t+ c
.

Since y(0) = y0, we have y0 = −1
c
, so c = − 1

y0
. Then

y(t) = − 1

t− 1
y0

.
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Now, the conditions of the existence-uniqueness theorem are satisfied for this ODE.
Indeed, f(t, y) = y2 and ∂f

∂y
= 2y are continuous on all of R2. However, the solution

is defined only on the interval (−∞, 1
y0

) and not on all of (−∞,∞) (We say the

solution blows up at 1
y0

). Notice that the place of the blow-up depends on the initial
condition, hence it can not be quickly predicted from the ODE only. One actually
has to solve the ODE in order to understand what happens.

4 Some Other Differences

There are some further differences between linear and nonlinear equations, two of
which we remark below:

� The general solution of a linear first order ODE can be written as a formula
in terms of the functions p(t) and q(t). This is not the case for nonlinear
ODE’s. Even if one can find all solutions, not all solutions need to correspond
to special values of a constant in some general formula. It might be difficult
to understand how the solution depends on the parameters and functions in
the original ODE.

� When solving a nonlinear ODE, one sometimes needs to leave the final solu-
tion in an implicit form. This is never necessary for a first order linear ODE
since the formula expresses y explicitly in terms of t.
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