
MATH 219
Fall 2020

Lecture 17

Lecture notes by Özgür Kişisel

Content: Mechanical Systems

Suggested Problems: (Boyce, Di Prima, 9th edition)

§3.7: 3,7,12,18,26,27

§3.8: 4,6,10,11,15,17

In this lecture, we will study some important applications of our results about higher
order linear equations. Many real life problems concern vibrations of a mechanical
or electrical system. Differential equations provide an excellent setting for under-
standing them.

1 Undamped Spring-Mass Systems

Suppose that we have a linear spring. Hooke’s law asserts that the restoring force
applied by the spring is directly proportional to the contraction/elongation distance
of the spring. We assume that one end of the spring is firmly attached to a ceiling.
If we attach an object of mass m to the other end, then the spring will be elongated,
say by ` meters. If the object is not moving (in other words, if it is at equilibrium),
then the gravitational force on the object must be equal to the restoring force exerted
by the spring. Therefore,

mg = k`.

This relation can be used to determine the spring constant k, if it is unknown.
Suppose now that the object is not at equilibrium, so it is moving up and down as
the spring contracts and elongates. We would like to understand precisely how the
object moves. Suppose that u(t) denotes its position at time t. We may assume
that the equilibrium position corresponds to u = 0.

When the object is at position u(t), the force exerted by the spring on it (apart
from the k` term, which is equalized by mg) is ku(t). Therefore, by Newton’s law
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Figure 1: Diagram A: Nothing is attached to the spring. Diagram B: An object of
mass m is attached to the spring. It causes an elongation of ` units, however the
object is not moving. Diagram C: The object is moving. The displacement from the
position in the previous diagram is u(t).

of motion F = ma, we may write

mu′′ = −ku.

Let us put all terms of this equation on the left hand side and write

mu′′ + ku = 0.

This is a constant coefficient, linear, homogenous ODE for u. The characteristic
equation is mλ2 + k = 0 and its roots are λ1,2 = ±i

√
k/m. It is customary to write

ω0 =
√
k/m and to call it the natural frequency of the system. The general

solution of the equation is:

u(t) = c1 cos(ω0t) + c2 sin(ω0t)

where c1, c2 ∈ R.

The values of c1 and c2 are determined by the initial conditions u(t0) and u′(t0).
There is another way to write the same solution which is handy for graphing it.
Write the point (c1, c2) in R2 in polar coordinates. Namely, let

R =
√
c21 + c22, c1 = R cos θ, c2 = R sin θ.
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Figure 2: Output of an undamped system. Here, u(t) = 5cos(2t− 1).

Then we can write u(t) as follows:

u(t) = c1 cos(ω0t) + c2 sin(ω0t)

= R(cos θ cos(ω0t) + sin θ sin(ω0t))

= R cos(ω0t− θ).

This equation shows that the maximum and minimum values attained by u(t) are R
and −R respectively. The magnitude R is called the amplitude of the wave. The
graph is a cosine function shifted according to the value of θ. The angle θ is called
the phase. One can see the effect of the natural frequency ω0 on the graph: A high
frequency (large ω0) gives us a denser graph and a low frequency (small ω0) gives
us a sparser graph.
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(a) High frequency (ω0 = 20) (b) Low frequency (ω0 = 0.5)

2 Effect of Damping

Suppose that, in addition to the forces above, a damping force (which could be due
to friction or some viscous medium, etc.) applies on the object. We will assume that
this damping force is directly proportional to the velocity of the object. Suppose
that the proportionality constant is γ. Then,

mu′′ = −ku− γu′.

This equation is again a linear, homogenous equation with constant coefficients. If
we move all of its terms to left hand side, then it becomes mu′′ + γu′ + ku = 0.
Notice that all of the coefficients m, γ, k are positive. The characteristic equation
and its roots are:

mλ2 + γλ+ k = 0

λ1,2 =
−γ ±

√
γ2 − 4mk

2m
.

The form of the solution depends on the signature of the discriminant ∆ = γ2−4mk.

Overdamped case (∆ > 0): In this case both eigenvalues λ1, λ2 are real and λ1 6=
λ2. We claim that both eigenvalues are negative. Indeed, notice that

λ1 + λ2 = − γ
m
< 0, λ1λ2 =

k

m
> 0.

Since two real numbers whose sum is negative and whose product is positive must
both be negative, we see that both eigenvalues are negative.
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Figure 4: Output of an overdamped system. Here, u(t) = 4e−t − 3e−2t.

The solution u(t) of the equation is

u(t) = c1e
λ1t + c2e

λ2t

where c1, c2 are arbitrary constants. Since λ1, λ2 are negative, u(t) tends to 0 as t
tends to +∞. It is not difficult to see that the function u(t) has at most one local
maximum or minimum.

Critically damped case (∆ = 0): In this case, λ1 = λ2 = −γ/2m. Notice that
this number is negative. The solution is

u(t) = c1e
− γ

2m
t + c2te

− γ
2m

t

where c1, c2 are arbitrary constants. Again, it is easy to check that limt→+∞ u(t) = 0
and the function u(t) has at most one local maximum or minimum.

Underdamped case (∆ < 0): In this case λ1 and λ2 are a pair of complex conju-
gate numbers given by:

λ1,2 = − γ

2m
± i
√
−∆

2m
.
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Figure 5: Output of a critically damped system. Here, u(t) = 4e−2t − 3te−2t.

Let us say ω =
√
−∆/2m for convenience. The general solution of the system is

u(t) = c1e
− γ

2m
t cos(ωt) + c2e

− γ
2m

t sin(ωt)

where c1, c2 are arbitrary real numbers. As in the undamped case, if we express
(c1, c2) in poılar coordinates, we get

u(t) = Re−
γ
2m

t cos(ωt− θ).

Here, c1 = R cos θ and c2 = R sin θ as before. The curve will be trapped between the
“envelope curves” y = Re−

γ
2m

t and y = −Re− γ
2m

t, and it will oscillate between them.
The function u(t) has infinitely many local maxima and minima, which corresponds
to a never-ending oscillatory motion whose amplitude drops towards 0 in time.

3 Mechanical Systems with a Forcing Term

Suppose now that, in addition to the forces previously considered, an external force
F (t) acts on the object. It is important for the discussion that this force is not
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Figure 6: Output of an underdamped system. Here u(t) = 5e−t cos(6t − 1). The
envelope curves are also drawn.

explicitly dependent on the position of the object, but it is dependent on time. The
equation of motion becomes:

mu′′ + γu′ + ku = F (t).

Therefore, the equation is still linear with constant coefficients, but this time it
is non-homogenous. Let uh = c1u1 + c2u2 be the solution of the corresponding
homogenous equation. It can be found as discussed in the previous sections of this
lecture. Having found uh(t), we can apply the variation of parameters formula in
order to find u(t). Let W = u1u

′
2 − u′1u2 be the Wronskian of u1 and u2. Then,

u(t) = u1(t)

∫
−u2(t)F (t)/m

W
dt+ u2(t)

∫
u1(t)F (t)/m

W
dt.
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Notice that we need to write F (t)/m and not F (t) in the formula since the leading
coefficient of the ODE is m and not 1.

This formula is quite significant: It expresses the “output” u(t) in terms of the
“input” F (t) in a condensed way. It is very general, essentially it tells us how any
such system responds to an input, and this is given as a formula in terms of the
system parameters. Now, let us investigate a special case in much more detail.

3.1 A special case

Let us assume for the sake of this discussion that γ = 0 (the system is undamped)
and F (t) = cos(ωt). Furthermore assume that the external frequency ω is not equal
to the natural frequency ω0 =

√
k/m. The ODE in question is:

mu′′ + ku = cos(ωt).

We know that the homogenous part of the solution is

uh(t) = c1u1(t) + c2u2(t) = c1 cos(ω0t) + c2 sin(ω0t).

Instead of employing the variation of parameters formula, let us solve this equation
by the method of undetermined coefficients. Set up(t) = A cos(ωt) + B sin(ωt).
Plugging up(t) into the ODE gives

m(−ω2A cos(ωt)− ω2B sin(ωt)) + k(A cos(ωt) +B sin(ωt)) = cos(ωt).

Equating the coefficients of cos(ωt) on both sides and the coefficients of sin(ωt) on
both sides, we get:

A =
1

k −mω2
=

1

m(ω2
0 − ω2)

, B = 0.

Therefore,

u(t) = uh(t) + up(t) = c1 cos(ω0t) + c2 sin(ω0t) +
1

m(ω2
0 − ω2)

cos(ωt).

Notice that the amplitude of the particular solution up(t) is highly sensitive to the
difference between the external frequency ω and the natural frequency ω0. If we
draw the graph of the amplitude |A| with respect to ω, we see this clearly. The
phenomenon of the amplitude going to ∞ when ω tends to ω0 is called resonance.
Notice that the input amplitude is always 1 in this example, however the output
amplitude changes dramatically with ω. This fact has many applications and also
poses many potential dangers in real life situations.
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Figure 7: This figure shows the frequency response of a system where ω0 = 3. The
horizontal axis is the external frequency ω and the vertical axis is the amplitude of
the output.

4 Further Details

Below, we collect some remarks which can be ignored in the first reading but would
be interesting after the material in the previous sections are digested by the reader.

1. Let us look at the special case that we discussed above in some more detail.
Suppose that the system is initially “at rest”, namely u(0) = u′(0) = 0. Then,
first of all, u′(0) = 0 implies that c2 = 0. Then, using u(0) = 0 we get
c1 = −1/m(ω2

0 − ω2). Therefore,

u(t) =
1

m(ω2
0 − ω2)

(cos(ωt)− cos(ω0t))

=
−2

m(ω2
0 − ω2)

sin

(
(ω0 + ω)t

2

)
sin

(
(ω − ω0)t

2

)
.

For the last equality, use the trigonometric identity relating the difference of
two cosines to a product of sines. If ω is close to ω0, but not equal to it,
then this function is the product of a low frequency wave and a high frequency
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wave. The low frequency graph will act as an envelope function for the high
frequency oscillations. The low frequency envelope waves are called beats.

Figure 8: This is the output of an undamped system with ω0 = 3 and the external
frequency ω = 3.1. Beats can be observed clearly in this graph.

2. If ω = ω0 in the discussion above, then we should try a particular solution in
a different form: up(t) = At cos(ω0t) + Bt sin(ω0t). The graph will again be
similar to the beats graph described above, but this time the envelope will be
a linear function rather than a sinusoidal. The amplitude of u(t) is infinite.

3. From a “black-box” point of view, the system takes the function F (t) as in-
put and produces u(t) as output. The relation between u(t) and F (t) can
be written using the variation of parameters formula. Linearity of the ODE
implies the following: Suppose that the input F (t) produces an output u(t)
and the input F̂ (t) produces an output û(t). Then the input c1F (t) + c2F̂ (t)
will produce the output c1u(t) + c2û(t).

The fact that the ODE has constant coefficients m, γ, k can be interpreted as
the system parameters not changing in time. We say that the system is “time
invariant”.
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Figure 9: Here, u(t) = 2t cos(3t− 1). Resonance occurs.

4. In the discussion of undamped systems, the case of ∆ = 0 was called the
“critically damped case”, but we did not say much about why it is called
critical. This is related to how fast the solution uh(t) decays to 0 as t→ +∞.
Here are some basic rules of thumb:

� If r1, r2 are both positive real numbers, then e−r1t decays to 0 faster than
e−r2t if r1 > r2.

� If uh(t) is the sum of several terms, then the decay rate of the slowest
decaying summand determines the rate of decay of uh(t).

Going back to mu′′ + γu′ + ku = 0, suppose that m and k are kept constant
but γ is changing. Suppose first that the roots of the characteristic equation
are real, namely the system is either overdamped or critically damped. Since

λ1 + λ2 = − γ
m
,

one of them is at least as large as their average, −γ/2m. The larger root
will determine the rate of decay. Therefore the fastest decay among all these
possibilities is the case of critical damping, λ1 = λ2 = −γ/2m.
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It remains to look at the underdamped case. In this case, |λ1| = |λ2| and their
product λ1λ2 = |λ1|2 = k/m does not change with γ. Hence |λ1| = |λ2| =√
k/m. The real parts of λi will be smallest when the roots are real, namely

at the point of critical damping. Since the real parts determine the rate of
decay, we again see that the underdamped cases decay slower compared to the
critically damped case.

Summarizing, for fixed values of m and k, the critically damped case is the
one where u decays to zero fastest.

5. Let us look at a damped system with an external force F (t). If the force
F (t) is not tending to 0 when t → ∞, then neither will up(t). However, we
know that limt→∞ uh(t) = 0. Therefore, for practical reasons, only up(t) will
remain after a while and we won’t see much of uh(t). For this reason, uh(t) is
called the transient part of the solution and up(t) a steady state solution.
Notice that this is not entirely well-defined, since shifting part of uh into the
particular solution creates an equally valid particular solution.

6. The whole discussion has a very similar counterpart in the theory of electrical
circuits. The relevant electrical components for this discussion are linear
components. These components and their voltage-current relationships are

� Resistors (V = IR)

� Capacitors (I = C dV
dt

)

� Inductors (V = LdI
dt

)

In these equations, V denotes the voltage drop across the relevant component
and I denotes the current through it. The values R,C, L are assumed to
be constants. Some other circuit components such as diodes, transistors or
op-amps are not linear components and cannot be analyzed by using linear
differential equations.

The correct counterpart of the external force F (t) is a voltage or current
source. Putting these components into an electrical circuit gives us differential
equations relating the currents and voltages which one can afterwards solve.
For instance, suppose that we have a series diagram containing one component
of each type and a voltage source as in the figure below. Then, VC +VL+VR =
E(t) since both sides measure the potential difference between two points in
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two different ways. Differentiating this relation once and using the voltage-
current relations for each component, we get

dVC
dt

+
dVL
dt

+
dVR
dt

=
dE

dt
I

C
+ L

d2I

dt2
+R

dI

dt
=
dE

dt
.

This is a second order, linear, constant coefficient, non-homogenous ODE for
the current I(t) through the circuit. Therefore, the theory should be exactly
parallel to the case of a spring mass system with an external forcing term.
The role of F (t) is played by E ′(t). The resistor causes damping, hence R =
0 corresponds to the undamped case. In the undamped case, the natural
frequency will be

ω0 =
1√
LC

.

For instance, if R is very low and E(t) contains a summand with frequency
very close to ω0, then one should expect a current with very large amplitude.

−
+E(t)

I

C

R

L

7. Even though we discussed second order ODE’s in this lecture predominantly,
everything can be generalized to higher orders easily. Writing down the equa-
tions as a system rather than a single equation may occasionally be more
convenient. Higher order ODE’s could come from spring-mass systems with
more springs and components interconnected to each other. Likewise, higher
order ODE’s could arise from more complicated electrical circuits than the
one we discussed above. We should note that in a realistic application the
number of such components could very well be at the order of thousands or
more. Therefore, numerical techniques for operating with large matrices be-
come important.
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8. Oscillations occur everwhere in real life. For this reason, the general prin-
ciples outlined in this lecture tend to reccur in many different settings. The
reader is encouraged to think about the validity and/or reason of the following
statements and make up some of his/her own:

� Resonance can cause damage in large constructions. There are some
examples such as the Tacoma bridge and the Millenium bridge incidents.

� Potential damage of resonance on constructions can be avoided by ar-
ranging the damping parameters at the stage of design.

� In order to lessen damage during an earthquake it is important to under-
stand the possible frequencies supplied by the earthquake.

� When you take your car to a mechanic, the suspension system should be
tuned so that it is at critical damping.

� It may be possible to crack a kidney stone externally, without any surgery
or damage to the surrounding tissues.

� A glass can be broken with an appropriate sound wave.

� A piano tuner listens to the difference between two close but unequal
notes via the resulting beat.

� In old style radios, turning the frequency knob changes a capacitance C,
therefore the natural frequency of a circuit.

� If we wish to filter out certain frequencies of an incoming signal, we can
do so by building a suitable electrical circuit.
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