MATH153 - Recitation 5

- 1. Find k such that the line y = k x is normal to the graph of $f(x) = x^2$ (Consider slope of tangent line of f(x) at the point (a,b).) Recall: Let l_1 and l_2 be two lines and m_1 and m_2 be slopes of l_1, l_2 , respectively. $m_1m_2 = -1$ iff l_1 is perpendicular to l_2
- 2. Find the equation of the tangent line of the $y = \sqrt{x} + 1$ at the point (1, 2) and tangent
- 3. Find the eqn of the tangent lines to the curve $y = x^3 + x$ which pass through the point (2, 2)
- 4. Find the derivative of the following functions using the definition of the derivative
 - (a) f(x) = 2x

(b)
$$f(x) = 2x^2 + 3x + 6$$

(c)
$$f(x) = \frac{x}{x+1}$$

- (d) $f(x) = \sqrt{2x+3}$
- 5. Evaluate the following limits
- 6. Find derivative of the following functions
 - (a) $f(x) = \sqrt{x} sinxcosx$ (b) $f(x) = \frac{xsinx}{x^2 + 1}$ (c) $f(x) = tan(\sqrt{x^3 + 3}sin(1 + x^2))$ (d) $f(x) = \frac{sin(\sqrt{x^2 + 2})}{cos(x^2 + 1)}$
 - (e) $f(x) = \sqrt{\cos^3(x^4 + 5x + 1) + \tan^2(x^4 + 5x + 1)}$
- 7. (a) Find fourth derivative of $f(x) = 4\sqrt[5]{x^3} \frac{1}{8x^2} \sqrt{x}$
 - (b) Find *n*th derivative of f(x) where f(x) = sin(2x) cos(x)
- 8. Prove the $(1+x)^r < 1 + rx$ provided that 0 < r < 1 and x > 0
- 9. Let f be a differentiable function such that f' is continuous and f(0) = 0, f(1) = 1, f(2) = 154, and f(3) = 153. Show that the graph of y = f(x) has a horizontal tangent line.
- 10. Suppose f is twice differentiable on an interval I(i.e. f'' exists on I). Suppose that the points 0 and 2 belong to I and that f(0) = f(1) = 0 and f(2) = 1. Prove that

- (a) $f'(a) = \frac{1}{2}$ for some point $a \in I$. (b) $f'(b) > \frac{1}{2}$ for some point $b \in I$. (c) $f'(c) = \frac{1}{7}$ for some point $c \in I$.
- 11. Let f be a function such that $|f(x)| \leq x^2$ for all x. Prove that f is differentiable at x = 0, and find f'(0).
- 12. Prove the following
 - (a) If g'(x) < 0 on (a, b) then g(a) > g(b) (Hint: Use MVT)
 - (b) If g'(x) < 0 for all x then g(x) is 1-1
 - (c) If f'(x) = g'(x) then f(x) = g(x) + k for some k
- 13. Find dy/dx and y'' for each of the followings
 - (a) $2xy + x^3 3y^2 = 5$
 - (b) $2x^3 + x^2y + y^2 = 4$ at the point (-1, 2)
 - (c) $x^3 2x^2 + y^4 = 8$
 - (d) $x^3 + 2y^2 xy = 2$ at the point (0, -1)