MATH153 - Homework 7 due April 26 at 12.30

For any real x the hyperbolic cosine, coshx, and the hyperbolic sine, sinhx, are defined by $e^x + e^{-x}$

$$\cosh x = \frac{e^{-} + e^{-}}{2}$$

$$\sinh x = \frac{e^{x} - e^{-x}}{2}$$
1. Show that $\frac{d}{dx} \cosh x = \sinh x$ and $\frac{d}{dx} \sinh x = \cosh x$
2. show that $\lim_{x \to \infty} (\frac{\sinh x}{\cosh x}) = 1$
3. show that $\lim_{x \to -\infty} (\frac{\sinh x}{\cosh x}) = -1$
4. Find $\sinh^{-1}x$
(Your answer should be $\sinh^{-1}x = \ln(x + \sqrt{x^{2} + 1})$.)

Note: $\lim_{x \to \infty} a^x = 0$ if 0 < a < 1