MATH 118 CALCULUS II, SUMMER 2022

Classes will start on Monday, July 25.

Attendance: Attendance will be taken every hour.

- Students who do not attend 22 hours or more will get NA grade IF they do not get a passing grade (DD) from the exams. In other words, those who get DD or higher from the exams WILL NOT be penalized if they do not attend enough lectures.
- Students who miss at most 3 hours will get bonus 4 points.
- Students who miss at most 4 hours will get bonus 3 points.
- Students who miss at most 5 hours will get bonus 2 points.
- Students who miss at most 7 hours will get bonus 1 point.

Course Instructors: Belgin Korkmaz, Mustafa Korkmaz

Lectures: Section 1: Mon-Th 9:00-11:50, Fri 9:00-10:50 M07

Section 2: Mon-Th 14:00-16:50, Fri 14:00-15:50 M07

Section 3: Mon-Th 9:00-11:50, Fri 9:00-10:50 M04

Section 4: Mon-Th 14:00-16:50, Fri 14:00-15:50 M04

Grading: Exam 1: 33 points, August 4, Thursday, 18:00 Exam 2: 33 points, August 18, Thursday, 18:00 Final: 34 points, September 3, Saturday, 09:00

Suggested textbook:CALCULUS A Complete Course Calculus. Eight Edition.Robert A. Adams, Christopher EssexReference Book:CALCULUS, James Stewart.

Week	Dates	Syllabus (Math 118) 2021-Summer	
1	July 25-29	 Ch 6: Techniques of Integration 6.1 Integration by Parts 6.2 Integrals of Rational Functions 6.3 Inverse Substitutions 6.5 Improper Integrals Ch 7: Applications of Integration 7.1 Volumes by Slicing-Solids of Revolution 	6.1 : 5, 7, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 28, 29, 33, 37 6.2 : 3, 5, 7, 9, 11, 13, 15, 1719, 21, 23, 25, 27, 29, 31 6.3 : 3, 5, 7, 9, 11, 13, 15, 1719, 21, 2 3, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 44, 45, 47, 49, 51 6.5 : 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 24, 25, 31, 33, 35, 37, 39, 41, 42 7.1 : 1, 3, 7, 11, 13, 15, 19
2	August 1-5	 7.2 More Volumes by Slicing 7.3 Arc Length and Surface Area Ch. 9: Sequences, Series, and Power Series 9.1 Sequences and Convergence 9.2 Infinite Series 9.3 Convergence Tests for Positive 	7.2: 3, 5, 7, 9, 11, 13,16 7.3: 3,5,7,9,11,13,14,2124,25, 27, 28, 29 9.1: 6,8,10,17,18,19,24,26,29,3 1, 35 9.2: 4,6, 8,10, 12, 14, 26, 27, 28, 29,30,31 9.3: 4,6,12,16,18,20,24,26,38,4
3	August 8-12	Series (Exam 1: August 4 Thursday 18:00) 9.4 Absolute and Conditional Convergence 9.5 Power Series 9.6 Taylor and Maclaurin Series 9.7 Applications of Taylor and Maclaurin	9.4 : 2,4,8,10,16,20,24,27 9.5 :4,8,10,13,14,17,18,22,26,2 8, 30 9.6 : 6,8,12,18,22,26,34,35,40 9.7 6,7,12,16,18,24
4	August 15-19	SeriesCh. 10: Vectors and Coordinate Geometry in3-Space10.1 Analytic Geometry in Three Dimensions10.2 Vectors10.3 The Cross Product in 3-Space10.4 Planes and Lines10.5 Quadric Surfaces(Exam 2: August 18 Thursday 18:00)	10.1 : 6,19,22,27,32,36,40 10.2 : 4,13,16,18,22,26,31 10.3 : 3,5,14,15,17,20,23 10.4 : 3,6,9,18,23,26,28,29 10.5 : 3,5,8,10,12,15,17,20,21
5	August 22-26	Ch. 12: Partial Differentiation 12.1 Functions of Several Variables 12.2 Limits and Continuity 12.3 Partial Derivatives 12.5 The Chain Rule 12.6 Linear Approximations 12.7 Gradients and Directional Derivatives	12.1: 4,5,8,12,13,14,20,24 12.2: 2,6,8,10,12,14,18 12.3 :4, 5, 6, 11, 12, 16,17, 21, 24, 28, 31, 36, 39 12.5 : 4,8,16,18,29,30 12.6 : 4,6,10,16 12.7 : 4,8,10,17,18,19,22,26,36
6	August 29-Sept 1	 Ch. 13: Applications of Partial Derivatives 13.1 Extreme Values 13.2 Extreme Values of Functions Defined onRestricted Domains 13.3 Lagrange Multipliers Ch. 14: Multiple Integration 14.1 Double Integrals 14.2 Iteration of Double Integrals in Cartesian Coordinates (Final Exam: September 3, Saturday, 09:00) 	13.1 : 1, 3, 6, 7, 9, 11, 17, 19, 24, 26 13.2 : 3,5,7,8,9,11,17 13.3 : 1,3,5,7,9,11,19,21,22 14.1 : 5,13,15,18,19 14.2 : 1,3,5,7,9,11,13,15, 17,19,21, 23,25,27