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1. (25pts) Let R be a ring. Consider Z(R) = {z € R | zr = rx for all r € R}.
(a) Prove that Z(R) is a subring of R.

Solution: The additive identity 0 = Og is an element of Z(R). This is because Or = 0
for all » € R. Thus Z(R) is nonempty.

Let x and y be elements of Z(R). We have zr = rx and yr = ry for all r € R. Our
purpose is to show that x —y € Z(R) and zy € Z(R).

For all » € R, we have
(x—y)r=ar—yr=rz—ry=r(z—y).

Here, the first and the last equality are obtained by the distributive laws. The equality
in the middle holds because z € Z(R) and y € Z(R). We conclude that x —y € Z(R).

Secondly, we have

TYr = TTY = 1ITY.

for all » € R. Here, the first and the second equalities follow from x € Z(R) and
y € Z(R), respectively. Thus we have xy € Z(R).

(b) Give an example of a ring R such that Z(R) is not an ideal of R.
Solution: If R is a commutative ring then R = Z(R) and therefore Z(R) is trivially an

ideal. We shall look for a counterexample of a ring R in which the ring multiplication

1s not commutative.

Indeed, any non-commutative ring with unity constitutes a counterexample. In such
a case pick x € R — Z(R). On the other hand 1z € Z(R) but 1 -« ¢ Z(R). Thus
Z(R) is not an ideal.

In particular, the ring of quaternions is a concrete example. Recall that H = {a +
bi+cj+dk | abc,d e R}. Observe that 1g € Z(H) but i ¢ Z(H). On the other
hand 1g - i =i ¢ Z(H).



2. (25pts) Let a € Z. Define the map « : Z — Zy5 by a(n) = [an] for each n € Z.

(a) Show that « is a ring homomorphism if and only if a®> = a (mod 15).

Solution: Suppose that o : Z — Z;5 is a ring homomorphism. We have
[a] = a(1) = a(1- 1) = a(1)a(1) = [a[d] = [a”].

It follows that a = a? (mod 15).
Conversely suppose that a*> = a (mod 15). Let z and y be elements of Z. We have

a(zy) = [azy] = [a*zy] = [az][ay] = a(z)a(y).
Moreover,
a(z +y) = la(z +y)] = [ax + ay] = [az] + [ay] = a(z) + a(y)

We conclude that « is a ring homomorphism.

(b) Now fix a = 6. For this choice, find Im(«) and Ker(«).

Solution: By definition, we have Im(a) = {«a(z) | € Z}. For a = 6, the image is
given by {[6z] | x € Z}. Clearly, Im(«) 2 {[0], [3], [6], [9], [12]}. Conversely, Im(a)) C
{101, [3],16],[9], [12]} because ged(6,15) = 3. We conclude that

Im(a) = {[0], 3], [6], [9], [12]}-

By definition, we have Ker(a) = {x € Z | a(z) = [0]}. For a = 6, the kernel is given
by {x € Z | [6z] = [0]}. Observe that 15/6x < 5|2z < 5|z. We see that z € Ker(«)
if and only if 5|z. Therefore

Ker(a) = (5) = {5k | k € Z}.



3. (25pts) Let R = Z5 and I = ([3]) be the principal ideal of R generated by [3].
(a) List all elements of I = ([3]). (Hint: |I| = 4)

Solution: T = ([3]) = {[3],[6], 9], [0]}.

(b) List all elements of R/I. (Hint: |R/I| = 3)
Solution: R/I ={[0]+1,[1]+1I,[2]+I}.

(c) Find the addition and the multiplication tables of the quotient ring R/I.

Solution: The addition table of the quotient ring R/I is as follows:

+
0] + 1
] +1
2] +1

*

[
O+ 171
[
[

]+ 1
2]+ 1

(d) Is R/I an integral domain?

Solution: Yes! The ring R = Z1, is commutative. It follows that R/I is commutative,
too. Note that [1]4 1 is the multiplicative identity of R/I. Finally, each possible pairs
of nonzero elements have nonzero products. We verify this by checking each case as

follows:
(U + D[]+ 1) = (A + 1) # ([0] + 1),
(L +D(2] + 1) = (2] + 1) # ([0] + 1),
(2] + D[]+ 1) = (2] + 1) # ([0] + 1),
(2] + D([21+ 1) = (1] + 1) # ([0] + 1)

(e) Is R/I a field?

Solution: Yes! The quotient ring R/ has three elements and it is an integral domain.

It follows that R/I is a field because any finite integral domain is a field.



4. (25pts) Let f(r) = 2+ 42® + 822 + 9z + 2 and g(z) = 2 + 422 + Tz + 6 be elements
of the ring R[z].

(a)

Show that the greatest common divisor of f(x) and g(x) is d(z) = z + 2.
Solution: We apply the Euclidean algorithm:

f(x)=g(x) z+ (2* + 32+ 2)
gx)=(@*+32+2) - (z+1)+ 2z +4)

1
2+ 3z +2= (20 +4)- (g+§) +0

Recall that the greatest common divisor is monic by definition. We conclude that the
greatest common divisor of f(z) and g(z) is d(x) = = + 2.

Find polynomials s(z) and ¢(z) in R[z] such that d(z) = f(z)s(x) + g(x)t(z).
Solution: We apply the Euclidean algorithm in reverse:
20 +4 = g(z) — (2 + 3x +2)(z + 1)

=g(z) = (f(z) —zg(z))(x + 1)
= f(z) - (—(x+1) +g(z)- (@®+z+1).

—~ o~

We can pick s(r) = —(z+1)/2 and t(z) = (z* + z +1)/2 which are elements of R[z].

Write g(x) as a product of irreducible polynomials over R.

Solution: Observe that g(z) = (z+2)(a?+ 2z +3). It is obvious that the term z+2 is
irreducible. The quadratic term 2% + 2z + 3 is irreducible if and only if it has no real
zeroes. Completing it to a square, we find that 2*>+2z+3 = (v +1)?+2. It is obvious
that this expression is strictly positive. Thus the polynomial 22 + 2z + 3 is irreducible
over R, too. The (unique) factorization of g(x) into irreducibles is (z +2)(z?+2z+3).



