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1. (25pts) Let R be a ring. Consider Z(R) = {x ∈ R | xr = rx for all r ∈ R}.
(a) Prove that Z(R) is a subring of R.

Solution: The additive identity 0 = 0R is an element of Z(R). This is because 0r = r0

for all r ∈ R. Thus Z(R) is nonempty.

Let x and y be elements of Z(R). We have xr = rx and yr = ry for all r ∈ R. Our

purpose is to show that x− y ∈ Z(R) and xy ∈ Z(R).

For all r ∈ R, we have

(x− y)r = xr − yr = rx− ry = r(x− y).

Here, the first and the last equality are obtained by the distributive laws. The equality

in the middle holds because x ∈ Z(R) and y ∈ Z(R). We conclude that x−y ∈ Z(R).

Secondly, we have

xyr = xry = rxy.

for all r ∈ R. Here, the first and the second equalities follow from x ∈ Z(R) and

y ∈ Z(R), respectively. Thus we have xy ∈ Z(R).

(b) Give an example of a ring R such that Z(R) is not an ideal of R.

Solution: If R is a commutative ring then R = Z(R) and therefore Z(R) is trivially an

ideal. We shall look for a counterexample of a ring R in which the ring multiplication

is not commutative.

Indeed, any non-commutative ring with unity constitutes a counterexample. In such

a case pick x ∈ R − Z(R). On the other hand 1R ∈ Z(R) but 1R · x 6∈ Z(R). Thus

Z(R) is not an ideal.

In particular, the ring of quaternions is a concrete example. Recall that H = {a +

bi + cj + dk | a, b, c, d ∈ R}. Observe that 1R ∈ Z(H) but i 6∈ Z(H). On the other

hand 1R · i = i 6∈ Z(H).



2. (25pts) Let a ∈ Z. Define the map α : Z −→ Z15 by α(n) = [an] for each n ∈ Z.

(a) Show that α is a ring homomorphism if and only if a2 ≡ a (mod 15).

Solution: Suppose that α : Z −→ Z15 is a ring homomorphism. We have

[a] = α(1) = α(1 · 1) = α(1)α(1) = [a][a] = [a2].

It follows that a ≡ a2 (mod 15).

Conversely suppose that a2 ≡ a (mod 15). Let x and y be elements of Z. We have

α(xy) = [axy] = [a2xy] = [ax][ay] = α(x)α(y).

Moreover,

α(x+ y) = [a(x+ y)] = [ax+ ay] = [ax] + [ay] = α(x) + α(y)

We conclude that α is a ring homomorphism.

(b) Now fix a = 6. For this choice, find Im(α) and Ker(α).

Solution: By definition, we have Im(α) = {α(x) | x ∈ Z}. For a = 6, the image is

given by {[6x] | x ∈ Z}. Clearly, Im(α) ⊇ {[0], [3], [6], [9], [12]}. Conversely, Im(α) ⊆
{[0], [3], [6], [9], [12]} because gcd(6, 15) = 3. We conclude that

Im(α) = {[0], [3], [6], [9], [12]}.

By definition, we have Ker(α) = {x ∈ Z | α(x) = [0]}. For a = 6, the kernel is given

by {x ∈ Z | [6x] = [0]}. Observe that 15|6x ⇔ 5|2x ⇔ 5|x. We see that x ∈ Ker(α)

if and only if 5|x. Therefore

Ker(α) = 〈5〉 = {5k | k ∈ Z}.
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3. (25pts) Let R = Z12 and I = 〈[3]〉 be the principal ideal of R generated by [3].

(a) List all elements of I = 〈[3]〉. (Hint: |I| = 4)

Solution: I = 〈[3]〉 = {[3], [6], [9], [0]}.

(b) List all elements of R/I. (Hint: |R/I| = 3)

Solution: R/I = {[0] + I, [1] + I, [2] + I}.

(c) Find the addition and the multiplication tables of the quotient ring R/I.

Solution: The addition table of the quotient ring R/I is as follows:

+ [0] + I [1] + I [2] + I

[0] + I [0] + I [1] + I [2] + I

[1] + I [1] + I [2] + I [0] + I

[2] + I [2] + I [0] + I [1] + I

The multiplication table of the quotient ring R/I is as follows:

∗ [0] + I [1] + I [2] + I

[0] + I [0] + I [0] + I [0] + I

[1] + I [0] + I [1] + I [2] + I

[2] + I [0] + I [2] + I [1] + I

(d) Is R/I an integral domain?

Solution: Yes! The ring R = Z12 is commutative. It follows that R/I is commutative,

too. Note that [1]+I is the multiplicative identity of R/I. Finally, each possible pairs

of nonzero elements have nonzero products. We verify this by checking each case as

follows:

([1] + I)([1] + I) = ([1] + I) 6= ([0] + I),

([1] + I)([2] + I) = ([2] + I) 6= ([0] + I),

([2] + I)([1] + I) = ([2] + I) 6= ([0] + I),

([2] + I)([2] + I) = ([1] + I) 6= ([0] + I).

(e) Is R/I a field?

Solution: Yes! The quotient ring R/I has three elements and it is an integral domain.

It follows that R/I is a field because any finite integral domain is a field.
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4. (25pts) Let f(x) = x4 + 4x3 + 8x2 + 9x+ 2 and g(x) = x3 + 4x2 + 7x+ 6 be elements

of the ring R[x].

(a) Show that the greatest common divisor of f(x) and g(x) is d(x) = x+ 2.

Solution: We apply the Euclidean algorithm:

f(x) = g(x) · x+ (x2 + 3x+ 2)

g(x) = (x2 + 3x+ 2) · (x+ 1) + (2x+ 4)

x2 + 3x+ 2 = (2x+ 4) ·
(
x

2
+

1

2

)
+ 0

Recall that the greatest common divisor is monic by definition. We conclude that the

greatest common divisor of f(x) and g(x) is d(x) = x+ 2.

(b) Find polynomials s(x) and t(x) in R[x] such that d(x) = f(x)s(x) + g(x)t(x).

Solution: We apply the Euclidean algorithm in reverse:

2x+ 4 = g(x)− (x2 + 3x+ 2)(x+ 1)

= g(x)− (f(x)− xg(x))(x+ 1)

= f(x) · (−(x+ 1)) + g(x) · (x2 + x+ 1).

We can pick s(x) = −(x+ 1)/2 and t(x) = (x2 + x+ 1)/2 which are elements of R[x].

(c) Write g(x) as a product of irreducible polynomials over R.

Solution: Observe that g(x) = (x+2)(x2 +2x+3). It is obvious that the term x+2 is

irreducible. The quadratic term x2 + 2x+ 3 is irreducible if and only if it has no real

zeroes. Completing it to a square, we find that x2 +2x+3 = (x+1)2 +2. It is obvious

that this expression is strictly positive. Thus the polynomial x2 + 2x+ 3 is irreducible

over R, too. The (unique) factorization of g(x) into irreducibles is (x+2)(x2+2x+3).
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