Name:

Student number:

METU MATH 116, Exam 2 Thursday, May 17, 2012, at 17:40 (90 minutes) Instructors: Beyaz, Ercan, Pamuk, Solak Instructions: It should be obvious to the grader how to read your solutions. Please work carefully.

Problem 1. (10pts) Assume that $R = \{ \begin{bmatrix} m & 2n \\ n & m \end{bmatrix} \mid m, n \in \mathbb{Z} \}$ and

 $R' = \{m + n\sqrt{2} | m, n \in \mathbb{Z}\}$ are rings with respect to their usual operations. Prove that R and R' are isomorphic rings.

1	
2	
3	
4	
5	
Σ	

Problem 2. (10pts) Let $G = A_4$ the alternating group. Let $H = \{(1), (12)(34), (13)(24), (14)(23)\}$ be a normal subgroup of A_4 .

- (a) List all the elements of A_4 .
- (b) Write out the distinct elements of G/H.

(c) Make a multiplication table for G/H.

Problem 3. (10pts) Let R be a ring. The center of R is defined as $Z(R) = \{x \in R | xr = rx \ \forall r \in R\}$. Show that Z(R) is a subring of R. Is Z(R) an ideal of R? Why?

Problem 4. (15pts) Let $\sigma = (12)(58)(346)(52)(41)(37)(67)$ be an element of S_8

(a) Write σ as a product of disjoint cycles.

(b) Find the order $\circ(\sigma)$.

(c) Is $\sigma \in A_8$? Why?

(d) Find σ^{265} .

(e) Given

$$\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 6 & 2 & 3 & 7 & 8 & 1 \end{bmatrix}.$$

Find $\alpha \in S_8$ such that $\alpha \sigma \alpha^{-1} = \beta$.

Problem 5. (10pts) Let R be the set of all matrices of the form $R = \{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \mid a, b \in \mathbb{R} \}.$

Assume R is a ring with respect to matrix addition and multiplication. Answer the following questions and in each of them prove your claim.

(a) Does R have a multiplicative identity? If so, find it.

(b) Is R an integral domain?

(c) Is R a field?