Name:

Student number:

METU MATH 116, Exam 1 Thursday, April 5, 2012, at 17:40 (100 minutes) Instructions: It should be obvious to the grader how to read your solutions. Please work carefully.

Problem 1. (10pts)

Find the greatest common divisor d of 693 and 414. Present d in the form d = 693x + 414y for $x, y \in \mathbb{Z}$.

1	
2	
3	
4	
5	
6	
Σ	

Problem 2. (6pts) Let a, b and c be integers. If gcd(a, b) = 1 and $c \mid a + b$, then show that gcd(a, c) = 1.

Problem 3. (3+3+4 pts) Let $M_2(\mathbb{R})$ denote the set of all 2×2 real matrices. Then matrix multiplication is a binary operation on $M_2(\mathbb{R})$. Let $H = \left\{ A \in M_2(\mathbb{R}) \mid A = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ for some $a \in \mathbb{R} \right\}$.

(a) Verify that H is closed under matrix multiplication.

(b) Show that matrix multiplication is noncommutative in $M_2(\mathbb{R})$, but it is commutative in H.

(c) Show that both $M_2(\mathbb{R})$ and H contain identities for matrix multiplication, but the identities are not the same.

Problem 4. (10pts) Show that $G = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R} - \{0\}\}$ under the operation * defined by $(x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 y_2)$ where $(x_1, y_1), (x_2, y_2) \in G$ forms a group.

Problem 5. (10pts) Solve the linear congruence $8x \equiv 66 \pmod{79}$.

Problem 6. (4+2+4+4 pts) Let $G = \langle g \rangle$ be a cyclic group of order 40.

(a) Determine all **DISTINCT** subgroups of G.

(b) Find all generators of G.

(c) Find all **DISTINCT** subgroups of G of order 4.

(d) Find $H = \langle g^5 \rangle$ and find all other generators of H.