M E T U Department of Mathematics

Group	BASIC ALGEBRAIC STRUCTURES						List No.	
	MidTerm 2							
Code Acad. Year	: Mati : 2009	h 116)-2010		Last Name	:			
Semester	: Spring	ng		Name : Student I). :		
Coordinator	: M.B	.,G.E.,	S.P, E.S.	Departmen	t :	Section	:	
_				Signature	:			
Date : May.20.2010 Time : 17:40 Duration : 100 minutes				5 QUESTIONS ON 4 PAGES TOTAL 100(+10) POINTS				
1 2	3	4	5	SHOW YOUR WORK				

Question 1. (20 points) List the cosets of $\langle [7] \rangle$ in the multiplicative group G of \mathbb{Z}_{16} . Make the multiplication table for the quotient group $G/\langle [7] \rangle$. Question 2. (20 points) Prove that every finite integral domain is a field.

Question 3. (20 points) Let $\phi : R \to S$ be a ring homomorphism between the rings R and S. Let J be an ideal of S. Show that $\phi^{-1}(J) = \{x \in R \mid \phi(x) \in J\}$ is an ideal of R.

Question 4. (20 points) Let $\alpha = (1357)$, $\beta = (2368)$ and $\gamma = (134)(2578)(165)$ be permutations in S_8 .

i) Write γ as a product of disjoint cycles.

ii) Find the order of α , β^{103} , γ .

iii) Determine whether γ is an odd or even permutation.

iv) Find a permutation $\sigma \in S_8$ such that $\sigma \alpha \sigma^{-1} = \beta$.

Question 5. Let G be a group. Define

$$Z(G) = \{ a \in G \mid ag = ga \text{ for all } g \in G \}.$$

i)(10 pts) Show that Z(G) is a normal subgroup of G.

ii)(10 pts) Prove or disprove: If $\varphi : G \to H$ is a group isomorphism between the groups G and H, then $\varphi(Z(G)) = Z(H)$.

BONUS (10 points) Let G be a group with Z(G) = C. If the quotient group G/C is cyclic, then G is abelian (commutative).