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- METU MATH 111, EXAM 1
Tuesday, November 9, 2010, at 17:40

Instructors: Berkman, Kiiciiksakalll, Pamuk, Pierce

Instructions: There are 7 numbered problems on 4 pages.
Tt should be obvious to the grader how to read your solutions.
Please wark carefully. b
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Problern 1. Complete the following ‘full’ truth-table. (You should write the
possible values of the varizbles in the standard order. The symbol & has the
same meaning as A.} ’ -
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Problem 2. Find a formula F with the following truth-table, Explain briefly
what you did.
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Problem 3. Write down the negation of the following sentence, without
using the negating connective — (you may use the sign of inequality #).

Ve Wy (e =y* = z=yVI=-y)
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Problem 4. Establish the following logical entailment by the method of
your choice. (You may for example write a formal proof in the ‘System of
Detachment’, or do something else, as long as it is clear to the reader what
you are doing. The symbol & has the same meaning as A.)

P, -PVQ,Q=R, ~(R&-8S)ES.
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Problem 5. Assume that the universe consists of the integers (that s, all
variables stand for integers); let E{z) stand for the property of « being even;
and let P(z) stand for « being prime. Using the quantifiers V and 3 as
needed, write down symbolically the following statement:

Every even integer that is greater than 4 is the sum of two primes.
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Problem 6. Assuming A and B are arbitrary sets, prove

AL B < ANB*#@.
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Problem 7. Explain what is wrong with the following ‘proof’ of the claim
that, for any sets A, B, C, and D,

(AuBYyn(CuDYC{(AnC)u(BnD) (+)

(Parts of the proof are numbered for ease of reference.)
(a) Suppose z € (AUB)N{CUD);
(b) we shall show z € (ANC)U (BN D).
{c) Wehavez € AUB
(d) andz € CUD.
(e) Therefore z € A or z € B;
() also,z€Corze b
(g) IfaceAanda;GC then:ceAﬂC
(h) fze Bandz € D, thenz € BN L.
(i) Since ANC C (ANC)U(BND)
(i} and BNDC{ANnC)u (BnD),
(k) it follows that z € (ANC)U (BN D).
(1) Therefore (¥) holds.
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