PRONORMALITY AND THE FRATTINI ARGUMENT FOR HALL SUBGROUPS

DANILA REVIN

The following simple statement is frequently used in the finite group theory.

The Frattini argument. Let A be a normal subgroup of a finite group G and let S be a Sylow p-subgroup of A for a prime p. Then $G = AN_G(S)$.

A subgroup H of a group G is said to be *pronormal* if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$. If H is a pronormal subgroup of a group G and is contained in a normal subgroup A of G then the Frattini Argument holds for H, i. e. $G = AN_G(H)$. The following strengthening of the Frattini argument holds: If A is a normal subgroup of G and P is a Sylow p-subgroup of A then P is pronormal in G.

There is a natural generalization of the concept of a Sylow *p*-subgroup. Take a set π of primes. A subgroup *H* of a group *G* is called a *Hall* π -subgroup if every prime divisor of |H| belongs to π and |G : H| is not divisible by the elements of π . Every Sylow *p*-subgroup is a Hall π -subgroup for $\pi = \{p\}$.

If a group G is solvable then the Hall theorem implies that the Hall π -subgroups of normal subgroups are pronormal in G. But in the case where G is non-solvable, even the Frattini argument fails for Hall π -subgroups in general. In the talk, we discuss a weaker analog of the Frattini argument and the problem of existence of pronormal Hall π -subgroups in a given group.

According to P. Hall, we write $G \in \mathcal{E}_{\pi}$ if G contains a Hall π -subgroup. We prove the following statements:

Theorem. Every normal subgroup A of a group $G \in \mathcal{E}_{\pi}$ contains a Hall π -subgroup which is pronormal in G.

Corollary 1. If G possesses a Hall π -subgroup then G possesses a pronormal Hall π -subgroup.

Corollary 2. Every normal subgroup A of a group $G \in \mathcal{E}_{\pi}$ contains a Hall π -subgroup H such that $G = AN_G(H)$.

 $\mathbf{1}$

SOBOLEV INSTITUTE OF MATHEMATICS, NOVOSIBIRSK (RUSSIA) E-mail address: revin@math.nsc.ru