BIO 754 - Lecture 12

11-05-2017

Contents
Functional enrichment of clusters 1
Interpreting cluster profiles 1
Using the topGO package e 5
Dependence among GO groupso e 8
Multiple testing e 8
Other functional effects L 9
Choice of background in enrichment tests L oL 9
Pseudoreplication in transcriptome/genome analyses 10
Chromosomal enrichment e e 10
Classification and prediction - supervised clustering 15
scatterplot3d e 16
Support vector machines (the e1071 package) Lo o 19
Sensitivity and specificity of predictiono 23
Analysing the iris dataset 24
Unsupervised clustering (hierarchical) o o 28
Supervised clustering (SVM) e 35
biplot and PCA factors 35

Functional enrichment of clusters

load("liver_transcriptome_v3.Rdata") # mmat6, sez2, species2

load("liver_transcriptome_v4.Rdata") # mmat6_aovp, mmat6_aouq

load("liver_transcriptome_v5.Rdata") # mmat6_aovp_perm

load("liver_transcriptome_v6.Rdata") # mmat6_aovp_perm2, toomuchrandomization, sexeffectconfounded

Interpreting cluster profiles

Now we will be testing the 2 clusters with human-specific profiles for enrichment in all GO categories. We
can here use the topGO package. The package retrieves GO database information and runs Fisher’s exact
tests (also called hypergeometric tests). Note that we use only DE genes as background, which is more
appropriate (more straightforward to interpret) than using all genes in the genome or all expressed genes
(which is sometimes done). We then correct for multiple testing using the BY method.

Let’s first recreate the kmeans clusters again and plot, using the code from last week:

snmat6 = t(scale(t(nmat6)))

spDEGenes = rownames (nmat6) [mmat6_aovq[,1] < 0.05]
set.seed (1)

km10 = kmeans(snmat6[spDEGenes,] , centers = 10)
number of genes

km10$size

[1] 400 261 260 129 298 330 557 166 312 384

wvector to group together species

reorder = c(which(species2 == 'HS'), which(species2 == 'PT'), which(species2 == 'RM'))
color wector

colx = c("red", "blue", "seagreen") [as.numeric(species?2)]

colx2 = colx[reorder]

par(mfrow=c(5,2))
for(i in 1:10) {
maintext = paste('cluster', i, 'with', km10$size[i], 'genes')
plot(km1O$centers[i, reorder],
col=colx2,
pch=19, cex=2,
main=maintext,
ylab="Scaled expression")
plot the legend for the 1st graph
if (i == 1) legend("topleft", text.col = unique(colx2), legend = levels(species2), bty="n", cex=1.2)

}

Scaled expression Scaled expression Scaled expression Scaled expression

Scaled expression

15

-05 05

15

-05 05

1.0

-1.0 0.0

0.0

-1.0

-05 05 15

cluster 1 with 400 genes

[J
HS o0 Y J
PT o
RM
(XY 000,
T T
5 10 15
Index

cluster 3 with 260 genes

L J
0909,
CYPY L) CYY Y L
[[[
5 10 15
Index

Index

cluster 7 with 557 genes

Index

cluster 9 with 312 genes

Index

Scaled expression Scaled expression Scaled expression Scaled expression

Scaled expression

-1.0 0.0 1.0

1.0

-1.0 0.0

0.5

0.5

-1.0 0.0

1.0

-1.0 0.0

cluster 2 with 261 genes

i 0%¢g¢0
0.0... .
o
T ... T ® T
5 10 15
Index

cluster 4 with 129 genes

5 10

Index

15

cluster 6 with 330 genes

L °
([FYY L1
[]
I I
5 10 15
Index
cluster 8 with 166 genes
L J
000
o o ".'."'."'
0000,
I I I
5 10 15
Index

cluster 10 with 384 genes

20e00®

Index

15

Question 1: Are the cluster mean profiles trustable? This we can check by comparing the profiles of a few
clusters and their members:

genes wn cluster 1
head(which(km10$cluster == 1))

ENSGO0000001617 ENSGO0000004766 ENSG00000005448 ENSGO0000005810

3 16 21 23
ENSGO0000006747 ENSGO0000012963
33 61

their names
head(names(which(km10$cluster == 1)))

[1] "ENSG0O0000001617" "ENSGO0000004766" "ENSGO0000005448" "ENSGO0000005810"
[5] "ENSGO0000006747" "ENSG00000012963"

plot the first 4
par (mfrow=c(2,2))
for (i in 1:4) {
genex = names(which(km10$cluster == 1)) [i]
boxplot(snmat6[genex,] ~ species2,
col=2:4, main = genex)

}

ENSG00000001617 ENSGO00000004766

] — 0 3 [

O — —— 0 O !

o =T I T T T
HS PT RM HS PT RM
ENSG00000005448 ENSG00000005810

o] — o —

— P — —]

_ o o _
] 4

o [o] —

T j — T T T =T T
HS PT RM HS PT RM

Not bad. We do observe variation from gene to gene, but the pattern of macaque up-regulation is consistent.
Question 2: How to interpret these profiles?

Note that they represent groupings of genes with similar expression profiles (irrespective of genes’ absolute
expression levels). Also note that we used an unsupervised clustering algorithm (kmeans did not know
about species identities), but we see that the cluster means mainly reflect species differences.

Some clusters are species-specific, such that one species is different from the others. E.g. cluster 8 genes
represent human-specific down-regulation, in that the other two species behave differently. Other clusters,

such as cluster 4, are mixed.

You may also notice that cluster 1 and 9 do not differ with respect to species differences, but the behaviour
of one macaque individual (this happens to be the outlier identified earlier). Thus, the clustering will be
influenced by any major source of variation in the data.

One note: this figure does not represent how much variation among genes there is within clusters. We
could have added this info by e.g. calculating standard deviation among genes for each individual and adding
this to the plot using the segments function.

Using the topGO package

Now we will learn to run Gene Ontology (GO) enrichment using a package. The test is the same as we had
performed for catabolism on the 10th week, but performed on all GO Biological Process categories. The
package is useful for obtaining all the GO information our genes of interest.

Packages can be very useful, but also dangerous in that the package’s default behaviour may be different
from what you would assume or prefer. E.g. is the package treating each GO independently, or taking into
account dependence? Is it correcting for multiple testing or not? Does it require a minimum number of genes
per GO group to run the test (a common method used to increase power)?

Usually you can find the information in the related paper and the package help documentation. For topGO
this is helpful:

https://www.bioconductor.org/packages/devel /bioc/vignettes/topGO/inst/doc/topGO.pdf
library(topGO, verbose =)

Loading required package: BiocGenerics
Loading required package: parallel

##
Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':

##

clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':

##

IQR, mad, xtabs

The following objects are masked from 'package:base':

#it

Filter, Find, Map, Position, Reduce, anyDuplicated, append,
#i# as.data.frame, cbind, colnames, do.call, duplicated, eval,
evalq, get, grep, grepl, intersect, is.unsorted, lapply,

lengths, mapply, match, mget, order, paste, pmax, pmax.int,
pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort,
table, tapply, union, unique, unsplit

Loading required package: graph
Loading required package: Biobase

Welcome to Bioconductor
##

https://www.bioconductor.org/packages/devel/bioc/vignettes/topGO/inst/doc/topGO.pdf

Vignettes contain introductory material; view with
#it 'browseVignettes()'. To cite Bioconductor, see
#it 'citation("Biobase")', and for packages 'citation("pkgname")'.

Loading required package: GO.db

Loading required package: AnnotationDbi

Warning: package 'AnnotationDbi' was built under R version 3.3.1
Loading required package: stats4

Loading required package: IRanges

Loading required package: S4Vectors

Warning: package 'S4Vectors' was built under R version 3.3.1

##
Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':
##
colMeans, colSums, expand.grid, rowMeans, rowSums

##
Loading required package: SparseM
Warning: package 'SparseM' was built under R version 3.3.2

##
Attaching package: 'SparseM'

The following object is masked from 'package:base':
##

backsolve

##

groupGOTerms: GOBPTerm, GOMFTerm, GOCCTerm environments built.
#i#t

Attaching package: 'topGO'

The following object is masked from 'package:IRanges':
##
#it members

database connection
library(org.Hs.eg.db)

##

define the clusters
genelist = kmlO$cluster

collect GO data for the 8th cluster genes and all DE genes

i=38

GOdata = new("topGOdata",

run the analysis with Biological Process categories
ontology = "BP",

the universe of all DE genes (foreground + background)
allGenes = genelist,

select the foreground (cluster 8 genes)

geneSel = function(p) { p == i },
description = "Test", annot = annFUN.org,
mapping="org.Hs.eg.db", ID="Ensembl")

##
Building most specific GOs
(5256 GO terms found.)

##
Build GO DAG topology

(9232 GO terms and 21899 relations.)

#i#
Annotating nodes

(2497 genes annotated to the GO terms.)

Now we can run the Fisher’s exact test on each category, comparing cluster 8 genes with all other 3000+ DE
genes. Note that using the classic algorithm runs the test on each GO group independently. Others, such
as weight01 will remove genes in child terms from higher terms:

resultFisher = runTest(GOdata, algorithm = "classic", statistic = "fisher")
##

-- Classic Algorithm --

##

it the algorithm is scoring 2544 nontrivial nodes

parameters:

test statistic: fisher

resultFisher

#i#t

Description: Test

Ontology: BP

'classic' algorithm with the 'fisher' test
9232 GO terms scored: 60 terms with p < 0.01
Annotation data:

#i# Annotated genes: 2497

#i# Significant genes: 136

Min. no. of genes annotated to a GO: 1
#it Nontrivial nodes: 2544

Here Annotated genes refers to all DE genes with GO annotation. Significant genes refers to cluster 8
genes (the foreground) with GO annotation. Nontrivial nodes refers to the number of GO categories with
min. one Annotated genes assigned to them.

number of "Nontrivial nodes" ("SigTerms" is a misnomer)
numberGO = resultFisher@geneData["SigTerms"]
numberGO

SigTerms
2544

make a summary of the results, for all GO groups
gores = GenTable(GOdata, classicFisher = resultFisher, topNodes = numberGO)
dim(gores)

[1] 2544 6

head(gores, 10)

G0.ID Term Annotated
1 G0O:0045184 establishment of protein localization 346
2 G0:0015031 protein transport 316
3 G0:0008104 protein localization 420
4 G0:0006412 translation 88
5 G0:0043043 peptide biosynthetic process 91
6 G0:0019058 viral life cycle 59
7 G0O:0051702 interaction with symbiont 5
8 GO0:0051851 modification by host of symbiont morphol... 5
9 G0:0043604 amide biosynthetic process 107
10 GO:1903900 regulation of viral life cycle 25
#i# Significant Expected classicFisher
1 34 18.85 0.00025
2 31 17.21 0.00053
3 38 22.88 0.00057
4 13 4.79 0.00074
5 13 4.96 0.00102
6 10 3.21 0.00104
7 3 0.27 0.00146
8 3 0.27 0.00146
9 14 5.83 0.00158
10 6 1.36 0.00175

How to interpret the table? E.g. among all DE genes n=346 were associated with “establishment of protein
localization”. Becase cluster 8 is small (~1/20 of all DE genes), under the HO that GO categorization and
being in cluster 8 are independent, we also ezpect ~1/20 of the 346 (<20 genes) in “establishment of protein
localization” in cluster 8. But we find >30, which appears significant in the Fisher’s exact test. Thus we
might reject the HO of independence (but see below).

This may be interesting. It shows that among genes down-regulated in humans, protein transport/localization
and some viral-related functions are enriched. Here two points worth mention:

Dependence among GO groups

The test here did not correct for the fact that the GO has a tree-like structure and categories are listed within
each other. Thus genes in “establishment of protein localization” are also members of “protein localization”.
Therefore an enrichment signal arising from a lower GO group will also spill into upper groups. This can be
likened to chimpanzees being known as aggressive compared to other apes, although it is mainly adult male
chimps who are aggressive. If you tested all chimps agains all other ape species, you would find a difference
on average, but if you had removed male chimps, perhaps there might be no difference left. Alternative
algorithms in topGO such as elim or weightO1 run the test, removing lower GO term members of significant
groups from upper terms.

Multiple testing

Note that we ran 2000+ tests and normally we need to correct for multiple testing. The p-values listed are
only nominal and cannot be taken at face value. Although topGO authors suggest to be liberal with respect
to correction, many other biologists would believe this is necessary.

Now we’ll run multiple testing correction using the BY method (which does not assume independence of tests
either), and collect the most extreme terms:

gqval = p.adjust(gores$classicFisher, met='BY')
gores2 = cbind(gores, qval)
head(gores2)

GO0.ID Term Annotated Significant
1 GO:0045184 establishment of protein localization 346 34
2 G0:0015031 protein transport 316 31
3 G0:0008104 protein localization 420 38
4 G0O:0006412 translation 88 13
5 G0:0043043 peptide biosynthetic process 91 13
6 G0:0019058 viral life cycle 59 10
Expected classicFisher qgval
1 18.85 0.00025 1
2 17.21 0.00053 1
3 22.88 0.00057 1
4 4.79 0.00074 1
5 4.96 0.00102 1
6 3.21 0.00104 1

So as you notice, the Fisher’s exact test results are not significant after multiple testing correction. In other
words, we have no strong evidence that these genes down-regulated in the human liver compared to those of
other primates, have specific functions.

Other functional effects

e In addition to using GO, we could also have tested for common regulatory properties: e.g. tran-
scription factor binding sites in promoters, common enhancer types, miRNA binding sites, etc.

e« We could have compared our data with other datasets, such as the mouse diet experiment: Are
human-chimpanzee differences correlated with those induced by diet in mouse liver?

e We could check the evolutionary properties of these genes. E.g. Are genes that are differentially
expressed in the liver among primates evolving faster than non-DE genes in their protein coding
sequence?

Choice of background in enrichment tests

We tested enrichment in cluster 8 genes compared to all other DE genes with GO annotation. The former
set is sometimes called foreground and the latter set the background. It is important how we choose our
background. This could theoretically be:

« all genes in Ensembl (60k genes, including non-protein coding genes and pseudogenes),
« all 1:1 orthologs in human, chimp and macaque (the 20k genes in the original dataset),
o all expressed orthologs in the primate liver (15k).

The background sets actually reflect your null hypothesis. One will find different results using different
backgrounds.

In our case, we want to know whether cluster 8 genes, compared to all other possible patterns of differential
expression, have unique functional properties. Thus, it makes sense that our background is all DE genes, but
not other sets. Otherwise we might find significant GO enrichment in cluster 8, but that reflects being a
protein-coding gene, having primate ortologs, being expressed in the liver, but not being down-regulated in
humans!

Take this example: If I ask whether people with a beard tend to smoke more often than average,
what should be my background? It should be other adult males, not all individuals. Otherwise, a significant
enrichment signal I may find could be just reflecting the fact that males (or adults) smoke more often.

Pseudoreplication in transcriptome/genome analyses

A commonly ignored problem with this functional enrichment test strategy (running the Fisher’s exact test
and applying multiple testing correction) is that it treats each gene as an independent observation. But
as we have seen, genes are co-regulated and show similar expression patterns - gene expression patterns are
by default not independent. This violates the assumption of the test. Plus, it cannot be corrected by multiple
testing.

An alternative approach (which we will not perform here) is permuting the individual labels, sorting
genes based on the p-value, choosing the same number of genes as originally chosen, repeating the enrichment,
and comparing how many GO categories show significant enrichment in the real case vs. permutations. This
should be yield more reproducible results.

Chromosomal enrichment
The last exercise is testing for chromosomal enrichment. This was part of the homework, and we repeat it
here.

Let’s test the putative sex-related DE genes for sex chromosomal enrichment. If these genes are indeed
non-significant / random, we expect no enrichment. But perhaps they are not.

Here we will obtain the chromosome location table for Ensembl genes using the biomaRt package, and run
our own Fisher’s exact test.

library(biomaRt)

connect to the database

ens = useMart("ensembl", dataset = "hsapiens_gene_ensembl")

ens_chr = unique(getBM(attributes=c('ensembl_gene_id', 'chromosome_name'), values=T, mart=ens))

save(ens_chr, file="ens_chr.RData")

load("ens_chr.RData")
head(ens_chr)

ensembl_gene_id chromosome_name

1 ENSG00000264452 21
2 ENSG0O0000278324 8
3 ENSG0O0000283502 2
4 ENSG0O0000241226 19
5 ENSG00000252604 4
6 ENSG00000274494 6

dim(ens_chr)

[1] 63898 2

summary (ens_chr)

ensembl_gene_id chromosome_name
Length:63898 Length:63898

Class :character Class :character
Mode :character Mode :character

10

length(unique(ens_chr[,1]))

[1] 63898

how come the table is so large?
length(unique(ens_chr[,2]))

[1] 381
head(table(ens _chr[,2]), 30)

##

1 10
5224 2208
11 12
3248 2952
13 14
1312 2214
15 16
2155 2509
17 18
3018 1174
#t 19 2
2951 3971
20 21
1391 837
22 3
1339 3019
4 5
2504 2869
6 7
2860 2884
8 9
2367 2246
#it CHR_HG107_PATCH CHR_HG126_PATCH
4 5
CHR_HG1311_PATCH CHR_HG1342_HG2282_PATCH
7 36
CHR_HG1362_PATCH CHR_HG142_HG150_NOVEL_TEST
18 16
CHR_HG151_NOVEL_TEST CHR_HG1651_PATCH
11 2

How many genes are on regular chromosomes?

sum(ens_chr[,2] %in’% c(1:22, "X", "y", "MT"))

[1] 58174

ens_chr_reg = ens_chr[ens_chr[,2] %in% c(1:22, "X", "y", "MT"),]
table (ens_chr_reg[,2])

#

#i# 1 10 11 12 13 14 15 16 17 18 19 2 20 21 22
5224 2208 3248 2952 1312 2214 2155 2509 3018 1174 2951 3971 1391 837 1339
3 4 5 6 7 8 9 MT X Y

3019 2504 2869 2860 2884 2367 2246 37 2366 519

11

plot(table (ens_chr_regl,2]))

=)
o _
QS
Y
> 7
&’lo
o _|
c O
o ™M
I
n _
c
2
T 8
o o
8 4
o - .

1 12 16 2 22 5 8 X

but here the order is nmot from 1 to 22
we can change this using the levels argument in factor()
table(factor(ens_chr_reg[,2], levels = c(1:22, "X", "y", "MT")))

#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5224 3971 3019 2504 2869 2860 2884 2367 2246 2208 3248 2952 1312 2214 2155
16 17 18 19 20 21 22 X Y MT

2509 3018 1174 2951 1391 837 1339 2366 519 37

plot(table(factor(ens_chr_reg[,2], levels = c(1:22, "X", "Y", "MT"))), ylab="No.

o
o _
o
Lo
3 o
c Q 4
GJO
mm
o _
zZ
o
= ‘
o
H |
O— Iu

[TTTTTTTTTTTTT T T T T T T T T T
1 4 7 10 14 18 22
Now we need to define gene lists:
o sex-related,
e not sex-related,
o X/Y-linked,

¢ autosomal.

12

genes")

genes on the sex chromosomes
head(ens_chr_reg)

ensembl_gene_id chromosome_name

1 ENSG0O0000264452 21
2 ENSGO0000278324 8
3 ENSG0O0000283502 2
4 ENSG00000241226 19
5 ENSG00000252604 4
6 ENSG00000274494 6

note the use of Jin/ operator
sex_chr_genes = ens_chr_reg$ensembl_gene_id [ens_chr_reg$chromosome_name %in% c('X', 'Y')]

nosex_chr_genes = ens_chr_reg$ensembl_gene_id [ens_chr_reg$chromosome_name %inJ, as.character(1:22)]

length(sex_chr_genes)

[1] 2885

length(nosex_chr_genes)

[1] 55252

intersect(sex_chr_genes, nosex_chr_genes)

character(0)

genes DE with sex

de_sex_genes = names(which(nmat6_aovp[,"sex"] < 0.05)) # nominal (uncorrected) p-values
node_sex_genes = names(which(nmat6_aovpl[,"sex"] >= 0.05))

length(de_sex_genes)

[1] 867

length(node_sex_genes)

[1] 14728

check that there %s no overlap
intersect(de_sex_genes, node_sex_genes)

character(0)

Now we need the size of overlaps between these vectors, construct a 2X2 matrix, and run the FET. For this
can write a small function based on length and intersect, and a larger function using the smaller one
inside:
loiloi = function(xl, x2, yi, y2) {

function to calculate a 2X2 matrixz and the corresponding 1-sided FET p-value

from the intersections between the vectors zl/z2 and y1/y2

first define the intersect function
loi = function(x, y) {
length(intersect(x, y))
}
overlaps = c(
loi(x1, y1),
loi(x1, y2),
loi(x2, y1),
loi(x2, y2))

13

matx = matrix (overlaps, 2, 2)
fet = fisher.test(matx, alt='greater')
return(list (matx, fet))

}

sexde_sexchr = loiloi(de_sex_genes, node_sex_genes, sex_chr_genes, nosex_chr_genes)
mosaicplot(sexde_sexchr[[1]], col=2:3, ylab = "DE", "chr")

chr
1.1

12
<]
| |-
0 o
N

And is this significant?

sexde_sexchr[[2]]

##

Fisher's Exact Test for Count Data
##

data: matx

p-value = 0.001757

alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:

1.260026 Inf

sample estimates:

odds ratio

1.684189

So we can reject the HO: genes on sex chr do tend to be more DE with sex, than other genes (note that the
test is already one-sided).

Could it be that genes on sex chr tend to be DE in general, such as also due to the species effect?

the same, this time using genes DE with species

spDEGenes = rownames(nmat6) [nmat6_aovql,1] < 0.05] # as defined earlier
no_spDEGenes = setdiff (rownames (nmat6), spDEGenes)

loiloi(spDEGenes, no_spDEGenes, sex_chr_genes,nosex_chr_genes) [[2]]

##

Fisher's Exact Test for Count Data

##

data: matx

p-value = 0.8524

alternative hypothesis: true odds ratio is greater than 1

14

95 percent confidence interval:
0.7235082 Inf

sample estimates:

odds ratio

0.888982

No, apparently not.

Classification and prediction - supervised clustering

Until now we only learned about unsupervised clustering, where we provided no information with respect
to the groups. k-means and hierarchical clustering are methods to summarise the data and create groups
without defining the groups in advance (note that there are many clustering methods we did not cover, such
as fuzzy clustering).

Instead methods also exist where we define groups a priori, and describe predictor functions that can be
used to classify novel cases. Let’s take the primate liver dataset - can we classify species accurately?

But this may be difficult using data from just one species:

colx = c("red", "blue", "seagreen") [as.numeric(species2)]
boxplot(nmat6[1,] ~ species2, col=unique(colx))

0 |

(00}

0 |

N~

0 |

© N
[[[
HS PT RM

boxplot (nmat6[2,] ~ species2, col=unique(colx))

15

Lo
- 1 (e}
o]
‘_' 1
0
o O
Q]
e |
HS
scatterplot3d

As you see, one gene’s expression levels don’t suffice. But using 2 or 3 genes together might be more helpful:
plot(t(amat6[1:2, 1), col=colx, pch=19)

Lo
- 1 []
n
o
S
o
S <7 .
S
o o ..
=)
O In [}
O o (1)
)
=z
L
o
o o [] e O o []

I I I I I I
65 70 75 80 85 9.0

ENSG00000000003
library(scatterplot3d)

Warning: package 'scatterplot3d' was built under R version 3.3.2
scatterplot3d(t(nmat6[1:3, 1), pch = 19, type="h", color = colx)

16

43

W

.06570758085090095

ENSG00000000419
#.24.44.64.85.05.25.45.65.86.0
)

ENSG00000000005

ENSG00000000003

Obviously, with more data, we can separate species readily. This we can show using hieararchical clustering:

plot(hclust (dist(t(nmat6))))

Cluster Dendrogram

o
@ p—
=

= i

S5 o [|= | ~

s 9 = rH —

T x ™ Egmm
s J o~ Mopks | MMEEEY o
© LL ELLIU)gNHN D'D-ELI—LLI—L

SAdS=2" T LS e
Q:ELLD:Df U)U)U)U)
S= ::j:]:j:
X
dist(t(nmat6))

hclust (*, "complete")
Another representation yet could be a correlation plot, this time representing grouping among individuals
depending on the correlation level:

library("gplots")
##
Attaching package: 'gplots'

The following object is masked from 'package:IRanges':
#it
space

The following object is masked from 'package:S4Vectors':
#i#

17

space

The following object is masked from 'package:stats':
##

lowess

with all genes
heatmap.2(cor(mnmat6), col=bluered)

Color Key

085 1
Value r ’JT
HSF1
HSM2
ll HSF2
HSM3
hﬂ iSM
ESFS

TF3

l PTM2

[)] n Il PTF1

PTF2

PTM3

PTM1

RMF1

RMMi1

RMF3

RMM3

RMF2

H HH RMM?2
ST genrSrrInsy
SsS = v ™ st V2] NN
Z¥2rophhoafoTPPTPT

with DE genes - more distinct, because we selected for such genes!
heatmap.2(cor(nmat6[spDEGenes,]), col=bluered)

18

Color Key

1 e

07 1
Value

N T

HSF2

HSM2

HSF1

HSM1

HSM3

HSF3

\ PTE3

PTF1

\ PTF2

PTM2

PTM1

PTM3

RMF1

RMM1

RMM3

RMFo

L | RMM2
Shireor eSS PresrSh
Ss==s FEFNGaOS0
Z¥r=FhnonoaaTPPTPT

If we had the expression profile of an individual of unknown species origin, we could correlate its profile with
each of the 3 species. The individual should then belong to the species with the highest correlation levels.

Support vector machines (the 1071 package)

A more elegant and powerful way to do the same is using support vector machines:
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_ to_svm/introduction_ to_ svm.html

This is a supervised learning algorithm, similar to logistic regression, discriminant analysis, neural networks,
were you can predict the identity of a sample given enough predictor data. We can use the e1071 package for
this: https://www.rdocumentation.org/packages/el071/versions/1.6-8

library(e1071)

Warning: package 'el071' was built under R version 3.3.2

svm_model = svm(t(nmat6[1:3,]), species2)

svm_model

##

Call:

svm.default(x = t(mmat6[1:3,]), y = species2)
##

##

Parameters:
#it SVM-Type: C-classification
SVM-Kernel: radial

cost: 1
gamma: 0.3333333
##

Number of Support Vectors: 17

19

http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
https://www.rdocumentation.org/packages/e1071/versions/1.6-8

pred = predict(svm_model, t(nmat6[1:3, 1))
pred

HSM1 PTF1 RMM1 HSF1 PTM1 RMF1 RMF2 HSM2 PTF2 RMM2 HSF2 PTM2 RMM3 RMF3 HSM3

HS PT RM HS HS HS PT PT PT RM HS PT RM
PTF3 PTM3 HSF3

PT PT HS

Levels: HS PT RM

for only individual 1
predict(svm_model, t(nmat6[1:3, 1]))

1
HS
Levels: HS PT RM

and for all individuals
table(pred, species2)

species2

pred HS PT RM
HS 5 1 1
PT 1 5 1
RM O O 4

Note that not all individuals are correctly predicted.

How about using the whole dataset?

svm_model = svm(t(nmat6), species2)
svm_model

#i#

Call:

svm.default(x = t(nmat6), y = species2)
##

##

Parameters:

SVM-Type: C-classification

SVM-Kernel: radial

cost: 1
gamma: 6.412312e-05
##

Number of Support Vectors: 18

pred = predict(svm_model, t(nmat6é))
pred

RM

HS

HSM1 PTF1 RMM1 HSF1 PTM1 RMF1 RMF2 HSM2 PTF2 RMM2 HSF2 PTM2 RMM3 RMF3 HSM3

HS PT RM HS PT RM RM HS PT RM HS PT RM
PTF3 PTM3 HSF3

#it PT PT HS

Levels: HS PT RM

table(pred, species2)

species2
pred HS PT RM

20

RM

HS

HS 6 0 O
PT 0 6 O
RM 0 O 6
Now we have much more power and all individuals are predicted correctly.

Leaving out

To fully demonstrate the predictive power of the SVM, we could also run this analyses with only part of the
data (e.g. leaving out an individual), and then check if those individual(s) (which the model is naive about)
can still be correctly identified.

species2[3]

[1] RM
Levels: HS PT RM

SVM without a macaque

svml = svm(x = t(nmat6[1:3, -3]), species2[-3])
predict the specties identity

predict(svml, t(mnmat6[1:3, 3]))

1
RM
Levels: HS PT RM

This also works nicely.

A hypothetical individual

How about a hypothetical individual with some noise?

use the 1st human's profile and add some noise from the standard normal distribution
x = nmat6[,1] + rnorm(nrow(nmat6), mean=0, sd=0.5)
heatmap.2(cor(cbind(nmat6, x)), col=bluered)

21

Color Key

o

085 1
hE
!
“Iill .y
o
} l!l!l!l l?l M
] n
I |
[. wlll i
ANANMM A TN NN X—=HMMNMNN
sSLsSususSsSULSH SIWSILSIL

=SS=SSSHEEEEE DR
Em%m%mmm&&a& o, i

Couly

UXIIITITIT
TS TIZ T

UUTUT
Pt o o o o o B O [[[P 1))

UES e e

NNw(AJ'_\I—‘HC\JNHNw RWooNGR

A0 00A0 U

predict(svm_model, t(x))

1
HS
Levels: HS PT RM

This works. How about more noise?

x = nmat6[,1] + rnorm(nrow(nmat6), mean=0, sd=2)
heatmap.2(cor(cbind(nmat6, x)), col=bluered)

22

Color Key

and Hi ra
07 1

Value H%? r"_lr?_k'—m_m_l,j?h

B

XANM A=A TN N AN AN NN

SSSSSEEEEEENOnDNNnN
Em%m%maa&&a&IxszI

VUL LLLLL

Uuuyvy
ZZZZZZ";'T!T:E—”%UJU)%(D%
|
%EgaéﬂpwwpmwwEENEH

X VOOV

predict(svm_model, t(x))

1
RM
Levels: HS PT RM

This doesn’t work: altough this made-up individual has relatively the highest correlation to other humans, it

is predicted to be macaque, most likely because macaques are the outlier group, and the made-up profile is
also an outlier.

Sensitivity and specificity of prediction

With only data from 3 genes, the accuracy is low. We can also talk about sensitivity and specificity, with
respect to a certain outcome.

Sensitivity is the proportion of predicted positives out of all true positives (similar to power). E.g. how
many real humans can we detect out of the 67

Sensitivity = true positives/(true positives + false negatives)

Sensitivity = 1 - false negative rate

So this is 0.8333333 for humans. We can also calculate this for all species:
sum(diag(table(pred, species2))) / length(species2)

[1] 1

Specificity is the proportion of true negatives out of all predicted negatives.

Specificity = true negatives/(true negatives + false positives)
Specificity = 1 - false positive rate

E.g. what is the probability that you detect someone is not a macaque?

23

12/(12 + 2)

[1] 0.8571429

Analysing the iris dataset

This part is courtesy of Dr. Tuba Bucak and other sources: https://cran.r-project.org/web/packages/
dendextend /vignettes/Cluster__Analysis.html

The famous (Fisher???s or Anderson??7s) iris data set gives the measurements in centimeters of the variables
sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris.
The species are Iris setosa, versicolor, and virginica.

Let us study the dataset using different classification methods:

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
dim(iris)

[1] 150 5

summary (iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. 6.900 Max. :2.500
Species

setosa :50

versicolor:50

virginica :50

#it

##

##

str(iris)

'data.frame': 150 obs. of b5 variables:

$ Sepal.lLength: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.44.9 ..
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1

$ Petal.Length: num 1.4 1.4 1.3 1.51.41.71.41.51.41.5
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1111111111

One way to study this dataset is to study correlations among the numeric variables. Using cor on heatmap
is one approach:

24

https://cran.r-project.org/web/packages/dendextend/vignettes/Cluster_Analysis.html
https://cran.r-project.org/web/packages/dendextend/vignettes/Cluster_Analysis.html

cor(iris[,1:4])

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411
Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000

heatmap.2(cor(iris[,1:4]), col = "bluered")

Color Key

nd Hi ra
el
-1 1

Value

But using the pairs function is even better:

Petal.
Petal.

Sepal

Sepal

Width
ength
ength
Width

pairs(iris[,1:4], col = as.numeric(iris$Species),
lower.panel = NULL,
cex.labels=1, pch=10, cex = 1.0)

25

n
~
o
3 Sepal.Length
o -
0
Sepal.Width
Petal.Length
Petal.Width

| I |

0.5 15 2.5
levels(iris$Species)
[1] "setosa" "versicolor" "virginica"

We can try a nicer version with colors:

library(colorspace)

Warning: package 'colorspace' was built under R version 3.3.2

colx = rainbow_hcl(3) [as.numeric(iris$Species)]
pairs(iris[,1:4], col = colx,
lower.panel = NULL,
cex.labels=1, pch=10, cex = 1.0)
par(xpd = TRUE) # add the legend to the ezisting plot
legend(x = 0.05, y = 0.4, cex = 1,
legend = as.character(levels(iris$Species)),
fill = unique(colx))

26

45 6.0 75

7 20 3.0 4.0

5

3

05 15 251

45 6.0 75

45 55 65 75 20 3.0 4.0 2 3 4 5 0.5 15 25
| I N I A A | | | | | | | | | | | | |
] Sepal.Length :
Sepal.Width B

Petal.Length -

[0 setosa N
O versicolor =
[virginica Petal.Width i

[[[[

05 15 25

MASS: :parcoord(iris[,1:4], col = colx, var.label = TRUE, lwd = 2)

title("iris")
par (xpd = TRUE)

legend(x = 1.75, y = -.25, cex = 1,
legend = as.character(levels(iris$Species)),

fill = unique(colx), horiz = TRUE)

27

45 6.0 75

7 20 3.0 4.0

5

3

05 15 251

>
y T I e

L, ——=
2 —~——
7 |
43 20 4 oL
Sepal.Length Sepal.Width Petal.Length Petal.Width

O setosa B versicolor @ virginica

Unsupervised clustering (hierarchical)

hc_iris = hclust(dist(iris))

Warning in dist(iris): NAs introduced by coercion

plot(hc_iris)

28

Cluster Dendrogram

w_
©_
v_

—

c

D

(@)

T N —
O_

M
oS COICEIR QY
S0 R ORI R R]

Bt 3 & AT
Y u"""-. N<IcY NI

dist(iris)
hclust (*, "complete")

dend = as.dendrogram(hc_iris)
plot(dend)
library(dendextend)

Warning: package 'dendextend' was built under R version 3.3.2

##

-

Welcome to dendextend version 1.5.2

Type citation('dendextend') for how to cite the package.

##

Type browseVignettes(package = 'dendextend') for the package vignette.

The github page is: https://github.com/talgalili/dendextend/

#i

Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
Or contact: <tal.galili@gmail.com>

##

To suppress this message use: suppressPackageStartupMessages(library(dendextend))
-

##
Attaching package: 'dendextend'

The following object is masked from 'package:stats':

##

cutree

dend = rotate(dend, 1:150)
plot(dend)

29

dend = color_branches(dend, k=3, col=unique(colx))
plot(dend)

00 —

orderx = order.dendrogram(dend)
change color labels
labels_colors(dend) = unique(colx) [
sort_levels_values(as.numeric(iris$Species) [orderx])]
plot(dend)

30

dend = hang.dendrogram(dend,hang height=0.1)
dend = set(dend, "labels cex", 0.5)
plot(dend,

main = "iris",

horiz = TRUE, nodePar = list(cex = .007))

31

irs

32

labels(dend) = as.character(iris$Species) [order.dendrogram(dend)]
plot(dend,

main = "iris",

horiz = TRUE, nodePar = list(cex = .007))

legend("topleft", legend = unique(iris$Species), fill = rainbow_hcl(3), bty="n")

33

Irns

O setosa

ca
VI
Vi
er

virgini

virginica

virginica

S5 wv 5555555 = 56 50_ == 55
20 LO56622 20 oo e 29
o ©Q cm o 50520 00666005 .22 00 005 X55 55, 66 0055
oo 3B 00 B3 88, LLsasoBiRR GRcSl.ER 00008 00333000, , 5599 OO, 508, 9000 995 23,0090
csooT 29 (] [elelhielel) {ele} 000 COOTE S 00 0000, 002 fole}
VVBOOS 22 m© 90 00 22 0000 OONSEN0S BNFEL v DNFHANNQCOeoeS BNo BN3o223 oaSuid
BOSS==) DO, TS = N DOODDIAAAT SHoODDOE =000 00 =RRNsseO000GE Doz DUOEGFEH005000 (L855m00
ROEETVDO (BAFARDNH By DOTODONG PAgHhgRPLD DISHEHEVD UG o8 I055eOTHAR0STE O08 OCNSEEGROGHO=DN30T5Hn
O0DLENUIZT 28 B80nBnngod PR LnnnngnndBnn S3L00.0] SSLLLSSNCCHHOT >>0 >>5O0CLLONNGEEr0SSAN
TOOD 8D | ConS | OOF a0 0>>000 Sorgs> 10, L5>>00000N500% 00
oy @ S L 20n008Sooo SO000 =5 = S3E S>>
D] 0 YonDDNRHS (oLt [o1=} [& o
7] =it} >> >0 > 7]
ool | © L =
nn 5 @
E g
@
g
[}
8 S
= £
2]
>
.
= O
e S

34

Supervised clustering (SVM)

svm_model = svm(iris[,1:4], iris$Species)
pred = predict(svm_model, iris[,1:4])
table(pred, iris$Species)

##

pred setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 2 48

biplot and PCA factors

Now let’s repeat our PCA analysis to check if the species separate, and which variable allows most separation:

pc = prcomp(as.matrix(iris[,1:4]))
plot(pc$x, col=colx, pch=19)

0.0 05 1.0

PC2

-1.0

-3 -2 -1 0 1 2 3 4

PC1

When we have limited number of variables, we can use biplot, which aims to represent both the observations
and variables of a matrix of multivariate data on the same plot:

biplot(pc, cex=0.5)

35

-20 -10 0 10 20

0.1 0.2

PC2
0.0
I

-0.2 -01 00 0.1 0.2

PC1

We can see that petal length has strong influence on the data (explains large part of the variance). Petal
width is correlated with petal length but explains less variance. And sepal width is uncorrelated.

36

	Functional enrichment of clusters
	Interpreting cluster profiles
	Using the topGO package
	Dependence among GO groups
	Multiple testing
	Other functional effects
	Choice of background in enrichment tests
	Pseudoreplication in transcriptome/genome analyses

	Chromosomal enrichment

	Classification and prediction - supervised clustering
	scatterplot3d
	Support vector machines (the e1071 package)
	Sensitivity and specificity of prediction

	Analysing the iris dataset
	Unsupervised clustering (hierarchical)
	Supervised clustering (SVM)
	biplot and PCA factors

