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Abstract

IMPROVING LAND DATA ASSIMILATION PERFORMANCE WITH
A WATER BUDGET CONSTRAINT

M. Tugrul Yilmaz, PhD

George Mason University, 2010

Dissertation Director: Dr. Paul R. Houser

A weak constraint solution was introduced to reduce the water budget imbalance

that appears in land data assimilation as a result of state updates. Constrained

Kalman Filter results were shown to be identical in single- or two-stages solutions for

Ensemble Kalman Filter (EnKF) whereas constrained Ensemble Transform Kalman

Filter (ETKF) single- and two-stage solutions form two different square root solu-

tions. Weakly Constrained Ensemble Kalman Filter (WCEnKF) and Weakly Con-

strained Ensemble Transform Kalman Filter (WCETKF) were evaluated for 3-hourly

and daily update frequencies with soil moisture only, or soil moisture and soil temper-

ature assimilated together. Not perturbed observations in EnKF was revisited. Both

constrained and standard solutions were performed for not perturbed observations

and without the constraint anomalies. Sensitivity of the constraint error variance is

analyzed by comparing the results from objectively estimating and by using tuned

values. Simulations were performed using the Noah Land Surface Model (LSM) over

Oklahoma, USA, using synthetic observations.



State errors of constrained and unconstrained solutions were found to be similar;

neither type had significantly smaller errors for most experiments. Constrained filters

had smaller water balance residuals than unconstrained standard filters for all tested

scenarios. The water balance residual of the ETKF and EnKF were similar for both 3-

hourly and daily update experiments. The majority of the total column water change

for daily updated filters resulted from the assimilation update. Not perturbing the

observations and not using the constraint anomalies affected the state prediction

skill only slightly where the residuals are significantly reduced when compared to the

standard filters. Tuned constraint variances gave similar performance with objective

variance estimation from the ensemble for WCEnKF but the tuned variances were

better than objective estimation for WCETKF.



Chapter 1: Introduction

Data assimilation is a technique for optimally combining observations and model

forecasts into a single best estimate of the state, while taking into account the accuracy

of the two independent estimates. Data assimilation systems are optimum only in so

far as certain underlying assumptions are fulfilled, namely that the forecast model is

perfect, observations and forecasts are unbiased, observation errors are independent

of the state, and all the distributions are Gaussian. However, available modeling and

observing systems do not satisfy all these assumptions. In practice, the model is

not perfect, observations and forecasts are biased, and the error covariances that are

needed to solve the optimal solution are unknown.

In land surface, data assimilation methods have used satellite-, air-, and ground-

based observations to improve estimates of soil moisture, soil skin temperature, snow

water equivalent, and snow cover estimates {Houser et al. (1998); Lakshmi (2000);

Crow and Reichle (2008); Reichle et al. (2008); De Lannoy et al. (2010)}. However,

special problems occur when conserved quantities are assimilated. For instance, as-

similation of hydrological observations (e.g. soil moisture) may improve estimates of

hydrological variables, but generally degrade the water balance because the analysis

increments do not conserve water since they are compensating for system biases or

errors. Even if the dynamical model conserves water, the state update generally cre-

ates a water budget imbalance. If the degree of water imbalance is excessive, then it

is reasonable to question whether an alternative data assimilation system should be

employed, particularly one that reduces or removes the imbalance of water.
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Skillful water estimation is important for hydrologists since it determines the

location of the stored water on land, eg. for streamflow, agricultural, and water man-

agement applications [Alsdorf et al. (2007)]. Accurate water budgets are important

for estimating runoff, because runoff is calculated as a residual of other water bal-

ance terms. Skillful estimations of the water and energy cycles are also important

for developing and validating hydrological models [Wei et al. (2010)]; in particular in

model skill assessment, facilitating model parameterization developments, calibrating

model parameterizations, better understanding the hydrological processes, assessing

the role of land over climate predictability [DelSole et al. (2009) and Dirmeyer (2003)],

and predicting future changes. In fact obtaining a better energy and water balance

has been focus of many scientific experiments, particularly World Climate Research

Program (WCRP) Global Energy and Water-Cycle Experiment (GEWEX). It has

been emphasized that the land-atmosphere interaction and the land water storage

still remains as the future issues to be addressed [WCRP JSC Report (2010)], which

are primarily linked with water and energy cycles.

Focusing on the energy and water balance variations analysis on a global scale

plays a key role in change related studies and in determining the predictability of the

climate, which are part of the primary goals of GEWEX. Land surface water regulates

the climate through the memory of the land which is primarily associated with the

soil moisture [Dirmeyer et al. (2009)]. Soil moisture controls the energy and the water

exchange between land and atmosphere, hence an accurate energy and water balance

at the land surface would translate into accurate climate predictions and perhaps

better understanding the change through better soil moisture estimation. In fact

obtaining a better soil moisture to infer the water storage in the land has been one

of the primary goals of Global Soil Wetness Project [GSWP, Dirmeyer et al. (1999)]

and GSWP2 [Dirmeyer et al. (2006)]. Furthermore, obtaining a ”closed” water and
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energy balance estimate on a continental scale is critical for many hydrology applica-

tions; in fact this was the primary goal of the Continental-scale International Project

(GCIP)[Roads et al. (2003)] which is another contributing project to GEWEX.

However, obtaining a balanced or closed water budget is not trivial: observations

are not temporally and spatially adequate to obtain useful closure information, or to

estimate their sampling uncertainties. Models have the potential to completely cover

the region of interest temporally and spatially, but, they may suffer from inaccurate

parameterizations. Hence, correct closure information may not be obtained from

models alone. Data assimilation combines both observations and models by taking

into account their error structures; however, as described above, their corrections may

lead to water budget imbalance due to the state updates that correct system bias or

error.

Pan and Wood (2006) proposed a constraint in land-data assimilation to ensure

that the data assimilation system conserved water. They have derived a two-stage

constrained Kalman Filter in which the first stage is a traditional Kalman Filter and

the second stage imposes a water balance constraint in an optimal manner. They

have also included precipitation, evaporation, and runoff in their state vector and

thereby used the filter to update these quantities. Pan and Wood (2006) showed that

the constrained Kalman Filter gave estimates not far from the unconstrained filter,

except that the water imbalance was removed.

In this study, it is shown that the constrained Kalman Filter can lead to very

unrealistic state estimates. Specifically, if individual terms in the water budget have

large errors, then imposing the budget to balance exactly requires these errors to

be distributed among the state variables. If these errors are sufficiently large, then

the budget constraint will cause some state variables to deviate beyond their natural

range. There are at least two ways for dealing with large errors in the budget terms:
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include forcing terms in the data assimilation procedure, as showed by Pan and Wood

(2006), or to impose a weakly constrained in which the water budget derived from

observed components is assumed to hold only approximately.

The purpose of this dissertation is to present a weakly constrained data assimila-

tion system in which a water budget constraint is imposed on the conventional data

assimilation systems while taking into account the uncertainties of the water bal-

ance elements. Weakly constrained solutions were introduced for both the Ensemble

Kalman Filter (EnKF) and Ensemble Transform Kalman Filter (ETKF). The weakly

constrained Kalman Filter is applied to idealized experiments and its performance

was compared to the unconstrained Kalman Filter. It is shown that the weakly con-

strained solution improves the water budget imbalance without increasing the errors

of the hydrological variables. In this study, not perturbation of the observations idea

in standard filters is also revisited. Again using idealized setup perturbed observa-

tions and constraint anomalies were not used in the constrained solutions. It was

shown that with little or no prediction skill loss, the water budget residuals were

further reduced. In this study, the variance of the constraint was estimated through

an objective way rather than through a tunable parameter. It was shown that for

some filters tuning can be avoided through the objective estimation method where

for some filters tuning resulted in better performance.

This study is organized as follows: chapter 2 briefly reviews the theoretical back-

ground of standard filters used in current land and atmospheric data assimilation;

chapter 3 introduces the water budget constraint and its implementation; chapter 4

introduces new methods that further improve the constrained filter; chapter 5 sum-

marizes the major outcomes of the results; and appendix section presents the detailed

derivation of the constrained filter.
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Chapter 2: Unconstrained Standard Filters

2.1 State Estimation in Least Squares Sense

Discovery of least squares has been a reason for a continuous debate in the scientific

community. Gauss applied least squares in 1801 to find the location of the asteroid

Ceres (that had been discovered by Giuseppe Piazzi but lost after tracking Ceres for

only couple of days due to his illness). Later, Legendre printed the first publication

on least squares [Legendre (1806)], where Gauss did not publish his solution until

1809 [Gauss (1963)] but claimed to have discovered this estimation theory in 1795.

Today the debate over who discovered least squares first continues, although some

historians attribute the discovery to Gauss [Sorenson (1970)].

After the discovery, least squares has gained its current form by Kalman (1960),

where this estimation theory can be used to describe most (but not all) assimilation

algorithms that have been used so far [Talagrand (1997)]. “One advantage of studying

assimilation theory in the perspective of general estimation theory is that it forces

one to explicitly formulate hypothesis which are necessarily made in one way or other

”[Talagrand (1997)]. Hence, in this section state estimation in least squares sense will

be briefly reviewed, before the full derivation of the assimilation methods introduced

in later sections.
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2.1.1 Least Squares Method

One of the most common applications of least squares is to fit a line to a group of

points, where a linear relationship is expected. In this example, only a single realiza-

tion (observed state estimate) is available for a given time step or space where the

minimization is seeked. Let us assume there is a linear relation between a predictand

(y) and a predictor (x) through some prediction parameters (a) with and observation

error (ε) as

y1 = a1 + x1a2 + ε1

y2 = a1 + x2a2 + ε2

...

yN = a1 + xta2 + εt

which can be conveniently grouped as

Y = XA+ ε

where Y (N x 1) is a vector holding the best estimates in time or space, X(N x 2) is

a matrix holding the observations, A(2 x 1) is a vector holding the parameters, and

ε(N x 1) is a vector holding the noise in the estimation.

The noise ε is assumed to be independently and Gaussian distributed with 0 mean

and σ2
ε variance. It is the final goal of Least Squares to minimize a squared estimate

(namely a “cost function”), which in this case is the variance of this noise. This cost
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function is defined as

J = σ2
ε = E[εT ε] = E[(Y −XTA)T (Y −XTA)]

J = E[Y TY − Y TXTA− ATXY + ATXXTA].

This cost function can be minimized by setting the first derivative to 0 and by solving.

Using the matrix identities given in Appendix section (B.1)

∂J

∂a
= −2XY + 2XXTA = 0,

where the second derivation of this cost function (2XXT > 0) shows the solution is

a minima. Hence solution for A that minimizes the above described cost function is

A = (XXT )−1XY.

2.1.2 Weighted Least Squares

Above derivation assumes equal weights for all residuals. If there is a reason we

believe that the uncertainties of the predictions are not equal in time or space, then a

new cost function can be formed by giving different weight to each residual. However,

this would require advance knowledge of the weights before the least squares fit. The

new cost function can be formed as

J = E[εTR−1ε] = E[(Y −XTA)TR−1(Y −XTA)]

J = E[Y TR−1Y − Y TR−1XTA− ATXR−1Y T + ATXR−1XTA], (2.1)
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where R is a symmetric matrix holding the weights (error variances) for each predic-

tion in time or space. Taking the first derivative of (2.1) and setting it to 0,

∂J

∂a
= −2XR−1Y + 2XR−1XTA = 0.

Hence solution for A can be found as

A = (XR−1XT )−1XR−1Y.

2.1.3 Recursive Least Squares

In above derived least squares examples, there is only a single realization of the state

together with its uncertainty available; namely observations. Given the presence of

another realization that is independent from the observations (could be from model

simulations), least squares can be still used to optimally combine both information

and obtain the best estimate. In above solutions, all data are given at once, prior

to the solution, where the minimization of the cost function is performed only once

to obtain a set of regression parameters. Rather than solving for all time steps

together, above solutions could have been identically obtained by solving the problem

recursively for each time step. On the other hand, with the presence of two realization,

where the model simulations at any time step is dependent on the analysis of the

previous time, a general solution for the best estimate requires a recursive estimation

rather than solving for all time-steps at once. In such state estimation, the initial

conditions may greatly effect the predictions, which is a property of nonlinear models

(not necessarily chaotic). Perturbations in the initial conditions may also self-amplify

in time, and could dominate over the signal in the initial conditions (especially in

chaotic models), which is particularly true for models like in atmospheric science
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applications [Talagrand (1997)].

In a recursive filtering framework, the cost function can be minimized separately

for each time step where the uncertainties in the initial state can be also included in

the state estimation. In fact, recursive estimation of the state is one of the advantages

of Kalman’s solution over the least squares solutions of Gauss (1963) and Legendre

(1806) [Sorenson (1970)]. Following Talagrand (1997), below illustrates a least squares

solution for the estimation of a state from independent sources of realizations with

their relative initial state uncertainties.

Assume we have two different temperature realizations (T1 and T2) with their

errors (ε1 and ε2) and error variances (σ1 and σ2).

T1 = Tt + ε1

T2 = Tt + ε2

where Tt is the true temperature. For simplicity, it is assumed that the errors have

zero mean and are uncorrelated, E[ε1ε2] = 0. It is desired to obtain an analysis (Ta)

from these two estimates with error variance (σa) that is smaller than both σ1 and

σ2.This analysis can be a linear combination of the two temperature estimate as

Ta = a1T1 + a2T2, (2.2)

where a1 and a2 are the relative weights of T1 and T2 respectively and the error of

the analysis is defined as εa = Ta − Tt. In order for the analysis to be unbiased

(E[Ta − Tt] = 0), it is required that the weights sum to 1 (a1 + a2 = 1). The error

9



variance of the analysis becomes

σ2
a = E[εTa εa] = E[(Ta − Tt)2]

= E[((a1T1 + a2T2)− (a1 + a2)Tt)
2]

= E[
(
a1(T1 − Tt) + a2(T2 − Tt)

)2
]

= E[
(
a1ε1 + a2ε2

)2
]

= E[(a1ε1)
2] + E[(a2ε2

)2
] + E[2a1a2ε1ε2].

Since errors are uncorrelated, the last term vanishes and the analysis error variance

becomes

σ2
a = a21σ

2
1 + a22σ

2
2.

The desired cost function can be chosen to minimize σ2
a. The solution can be found

by minimizing this cost function relative to a1:

J = a21σ
2
1 + a22σ

2
2 (2.3)

J = σ2
a = a21σ

2
1 + (1− a1)2σ2

2

J = a21σ
2
1 + (a21 + 1− 2a1)σ

2
2

∂J

a1
= 2a1(σ

2
1 + σ2

2)− 2σ2
2 = 0

a1 =
σ2
2

σ2
1 + σ2

2

& a2 =
σ2
1

σ2
1 + σ2

2

.
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The solution is intuitive that the “weights”are inversely proportional to the uncer-

tainty of the realization itself. Above weights a1 and a2 provide the solution for the

analysis itself, where the uncertainty of the analysis can be found after substituting

these weights back into (2.2),

σ2
a =

(
σ2
2

σ2
1 + σ2

2

)2

σ2
1 +

(
σ2
1

σ2
1 + σ2

2

)2

σ2
2

1

σ2
a

=
1

σ1
a

+
1

σ2
a

. (2.4)

It should be also emphasized that if the uncertainties in one of the estimate (say

in model) is very large when compared to the other estimate (say observations), then

the solution is reduced to the weighted least squares state estimate described above,

where the uncertainty of the state is equivalent to the uncertainty of the more accurate

estimate (in this case observations).

2.2 Kalman Filter

2.2.1 Standard Kalman Filter

Complete derivations of both KF and ETKF solutions can be found in numerous

papers; here, these derivations are reviewed once more to emphasize the differences

between the unconstrained and the constrained solutions.

The objective of data assimilation is to “optimally”estimate a set of quantities

using all available observations, prior knowledge of the underlying model structure,

and associated error statistics. In Kalman Filtering, the goal is to solve for the best

state estimate and its uncertainty, where this best estimate and its error covariance

information is propagated in time. Similar to (2.3), this optimal estimate can be
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estimated by minimizing a cost function [Lorenc (1986)]

J = (o−Hx)TR−1(o−Hx) + (x− xf )TP−1f (x− xf ), (2.5)

where lower case letters represent vectors, capital letters represent matrices; o is the

observations; x is the best estimate of the state to be found; H is a linear observation

operator that maps the model state to observation space; superscript T is the trans-

pose operator; R is the observation error covariance matrix; xf is the prior estimate

of the model state, usually obtained from a model forecast; and Pf is the model back-

ground error covariance matrix. The first term on the right side of (2.5) measures the

distance between the state and the observations, and the second term measures the

distance between the state and the background. Both distances are measured using a

norm based on the appropriate error covariance matrix. The vector x that minimizes

(2.5) gives the best estimate according to maximum likelihood or Bayesian derivation

methods [Maybeck (1982)]. The minimization of (2.5) can be obtained by setting the

derivative of J w.r.t. x equal to 0 and solving

∂J

∂x
= 2(HTR−1H + P−1f )x− 2(HTR−1o+ P−1f xf ) = 0.

Hence, the best estimate of the state is

xa = (HTR−1H + P−1f )−1(HTR−1o+ P−1f xf ),

where this solution is shown in Appendix (B.6) to be equivalent to,

xa = xf +K(o−Hxf ) (2.6)
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and

K = PfH
T (HPfH

T +R)−1 (2.7)

where xa is the updated state vector and K is the Kalman gain matrix. Consistent

with the above solution, the analysis error covariance can be found from the inverse

of the second derivation of the cost function [shown in Appendix (B.5); and Lorenc

(1986)],

Pa = (HTR−1H + P−1f )−1

which can be rewritten using the Sherman-Morrison-Woodbury formula as

Pa = Pf − PfHT (HPfH
T +R)−1HPf . (2.8)

Following Ide et al. (1997), temporal evolution of the best estimate of the analysis

is performed as

xft = Mxat−1 + εmt−1 (2.9)

where M is a linear operator that performs the temporal evolution of the state and

εt is the temporal evolution error. For atmospheric and hydrologic systems, M can

be a linearized numerical model, and εmt−1 is the prediction error of the model. Error
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covariance of this state estimate can be found

Pft = E[(xt − xft)(xt − xft)T ]

Pft = E[(Mxtt−1 −Mxat−1 + εmt−1)(Mxtt−1 −Mxat−1 + εmt−1)T ]

Pft = E[(M(xtt−1 − xat−1) + εmt−1)(M(xtt−1 − xat−1) + εmt−1)T ]

Pft = MPat−1M
T + E[εmt−1ε

T
mt−1

]− E[M(xtt−1 − xat−1)εTt−1] + E[εmt−1(xtt−1 − xat−1)TMT ].

Assuming the best estimate and the model prediction errors are independent, the

expectation operators of the cross terms in the last line would vanish.

Pft = MPat−1M
T +Qmt−1 (2.10)

where Qmt−1 represent the unpredictable terms in the model prediction at time t− 1.

First term in (2.10) represents the error in the current time step which is a result of the

propagation of the past analysis error, and the second term represents the modeling

integration error particular to the time interval that the prediction is done. In general

the second modeling error term is neglected with the perfect model assumption.

Multiplication of one vector with M is equivalent to running the model from time

t−1 to t. Hence, (2.10) requires model integration twice the number of state variables.

This temporal evolution of the forecast error can be computationally expensive, even

prohibitive, for atmospheric or oceanographic data assimilation systems. As a remedy,

to avoid the computational cost, forecast error covariances were obtained by inflating

the analysis error covariances with constant numbers [constant inflation factor of 1.5

for 6-hour forecast, Talagrand (1997)] were used in the past operational numerical

weather predictions.
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2.2.2 Extended Kalman Filter

Standard Kalman Filter solution requires the linear operator M (2.9) to evolve the

temporal evolution of the state error covariance. Since Kalman Filter is optimum

for linear systems, for non-linear models (like atmospheric, ocean, and land models)

linearization of the temporal transition model is required.

In Extended Kalman Filter (EKF), a linearized version of the nonlinear model

is used to propagate the error statistics of the state [Miller et al. (1994)]. Taking

into account the modeling errors, forecast and the true model predictions can be

formulated as

xft = Mt−1(xat−1)

where the true state is an unbiased estimate of the model with random modeling

errors,

xtt = Mt−1(xtt−1) + εmt−1 .

Subtracting the first line from the second

xtt − xft = Mt−1(xtt−1)−Mt−1(xat−1) + εmt−1 .

Using the Taylor expansion of r.h.s. of the above equation [reminder for the reader

f(x) = f(x̂) + (x− x̂)f
′
(x̂) + (x− x̂)2f

′′
(x̂) + .. where x̂ is the expected value of x]

xtt − xft = (xtt−1 − xat−1)M
′
(xat−1) +

1

2
(xtt−1 − xat−1)2M

′′
(xat−1)+

1

6
(xtt−1 − xat−1)3M

′′′
(xat−1) +

1

24
(xtt−1 − xat−1)4M

′′′′
(xat−1) + · · ·+ εmt−1 .
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Taking the square and the expected value of both sides

Pft = Pat−1(M
′

t−1)
2 + E[(εat−1)3]M

′

t−1M
′′

t−1

+ E[(εat−1)4][
1

3
M
′

t−1M
′′

t−1 +
1

4
M
′′

t−1M
′′

t−1] + · · ·+Qmt−1

where εat−1 is the error of the analysis and M
′
t−1 is the first order derivative of the

analysis at time t−1. Discarding the third and higher order moments assuming their

contributions are negligible [Evensen (2009)], above simplifies to the scaler form of

(2.10). Similarly the error covariance evolution for matrices can be shown to be

Pft = [DMt−1]Pat−1 [DMt−1]
T +Qmt−1

where DM holds the partial derivatives of M w.r.t. the analysis state at time t− 1.

At the same time, the best estimate of the state, Kalman gain, and the analysis error

covariance of EKF for time t can be found with the same standard Kalman Filter

solution equations as (2.6),(2.7), and (2.8) respectively.

2.2.3 Ensemble Kalman Filter

In typical geophysical data assimilation, the KF is prohibitively expensive. Moreover,

the background error covariance Pf is often unavailable due to its large dimension

and/or the underlying model is nonlinear. Above described closure scheme of EKF ne-

glects the higher order derivatives, which results in unbounded error variance growth

due to the linearization of the nonlinear model [Evensen (1992)]. To circumvent these

problems, Evensen (1994) introduced the EnKF, whereby ensembles of realizations

are created by Monte Carlo methods and carry the error covariance information.
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Evensen (1994) proposed updating the individual ensemble members using

xai = xfi +K(o−Hxfi)

where an i-index is included to identify the ensemble member. It proves convenient

to collect the ensemble members into a single matrix as

Xf =
1√

(N − 1)
[xf1 − µf , xf2 − µf , . . ., xfN − µf ].

where µf denotes the ensemble mean state vector, N is the ensemble size, and similarly

for the update Xa. In this notation, the analysis anomaly and the best estimate of

the state update equations become

Xa = Xf +K(O −HXf ) (2.11)

µa = µf +K(o−Hµf ) (2.12)

where Pf = XfX
T
f is substituted in (2.7) and (2.8); and O is a matrix of perturbed

observations in which each column is of the form o + εi, where εi is drawn from a

normal distribution with 0 mean and covariance R [Burgers et al. (1998)].

2.2.4 Ensemble Transform Kalman Filter

Bishop et al. (2001), Anderson (2001), and Whitaker and Hamill (2002) proposed

alternative ensemble filtering method that avoided perturbed observations. These

filters were shown to belong to a single family of filters called square root filters

[Tippett et al. (2003)]. Just as a square root is not unique due to an ambiguity in
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sign, square root filters are not unique due an ambiguity in a unitary transformation.

Bishop et al. (2001) derived the analysis error covariance matrix shown in (2.8) as

Pa = XfX
T
f −XfX

T
f H

T (HXfX
T
f H

T +R)−1HXfX
T
f

Pa = Xf

[
I −XT

f H
T (HXfX

T
f H

T +R)−1HXf

]
XT
f

using the inverse transformation of Sherman-Morrison-Woodbury formula, above

equation becomes

Pa = Xf

[
(XT

f H
T ∗R−1 ∗HXf + I)−1

]
XT
f

Pa = XfDX
T
f (2.13)

where

D = (I +XT
f H

TR−1HXf )
−1 (2.14)

and (2.13) is also consistent with Pa = XaX
T
a .

The square root of D can be derived from the eigenvectors of XT
f H

TR−1HXf .

Specifically, if the eigenvector decomposition of this matrix is expressed as

XT
f H

TR−1HXf = USUT

where U is unitary and S is a real positive diagonal matrix, then the most general

square root of D is

A = U(I + S)−1/2V T (2.15)

where V is any unitary matrix and AAT = D. This expression allows us to write the
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updated analysis anomaly matrix as

Xa = XfA (2.16)

It is also shown in Appendix (B.7) that the Kalman Gain can be obtained once the

eigenvalue decomposition is performed

K = XfDX
T
f H

TR−1.

It should be recognized that the square root matrix A depends on the choice of

V T . In contrast, the matrices Pa, D, and K are independent of V T and hence unique.

Choosing V = U makes the square root matrix A symmetric. Ott et al. (2004)

show that the quadratic form (Xa −Xf )
TPa

−1(Xa −Xf ), which is a measure for the

magnitude of the analysis update, is also minimized if A is selected as the symmetric

square root of D (which is unique). Accordingly, in the present study V T is chosen

to be UT .

Although both EnKF and ETKF have the same solution for Pa, D, K, and µa

when starting with the same ensemble, they produce different ensemble anomalies −

the EnKF produces the anomalies Xa as defined in (2.11), while the ETKF produces

anomalies given in (2.16). The EnKF requires inverting the matrix (HPfH
T + R),

which is expensive for meteorological data assimilation applications, but relatively

cheaper for land data assimilation applications when the simulations at different pix-

els are assumed uncoupled. In contrast, the ETKF requires calculating the eigenvec-

tor decomposition (XT
f H

TR−1HXf ) and inverting the matrix R, both of which are

feasible for moderate ensemble sizes and diagonal R.
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2.3 State Estimation from Bayesian Approach

Estimation of the optimum state in least squares is performed through a cost func-

tion by minimizing analysis error variances. Alternatively, the same solution can be

obtained by maximizing the probability of the likelihood of the analysis state from

Baye’s Theorem. Although, theoretically these are two different problems (finding

optimum weights to minimize the analysis error variance in observation space and

finding the optimum state that maximizes the likelihood of the observations using

error variances in state space), the solutions for these optimization problems are

equivalent [Talagrand (1997) and Kalnay (2003)].

Given an estimate of a multivariate observations are available, it is our goal to

obtain the best estimate of the state based on the available observations and the back-

ground forecasts. This best estimate is obtained through the probability distribution

of the state conditioned on the available observations, P (xt|Ot). Following DelSole

and Tippett (2010), using the Bayes theorem

P (xt|Ot) = P (xt|Ot−1ot)

=
P (xt, Ot−1, ot)

P (ot, Ot−1)

=
P (ot|xt, Ot−1)P (xt, Ot−1)

P (ot, Ot−1)

=
P (ot|xt, Ot−1)P (xt|Ot−1)P (Ot−1)

P (ot, Ot−1)

P (xt|Ot) =
P (ot|xt, Ot−1)P (xt|Ot−1)

P (ot|Ot−1)
(2.17)

where Ot denotes all the observations available until time t, and ot denotes the obser-

vations only at time t. Assuming the observations are unbiased estimates of the true
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state through operator H, the observations at time t can be related to the state with

an observation model ot = Hxt + rt. Also assuming the observational errors are tem-

porally uncorrelated (< rtrt−1 >= 0), then equality P (ot|xt, Ot−1) = P (ot|xt) would

hold; where from the Markovian property xt also holds the signal of the observations

at previous time steps. Accordingly, (2.17) would simplify to

P (xt|Ot) =
P (ot|xt)P (xt|Ot−1)

P (ot|Ot−1)
(2.18)

The term in the denominator of (2.18) is independent of xt; hence, the best estimate

of the state is related to

P (xt|Ot) ∝ P (ot|xt)P (xt|Ot−1) (2.19)

Both terms on r.h.s. of (2.19) have Gaussian distributions. The above model of

observations implies that

P (ot|xt) =
1√

2π|R|
e−

(o−Hx)TR−1(o−Hx)
2

and following the modeling assumptions of the state

P (xt|Ot−1) =
1√

2π|Σf |
e−

(x−µf )TΣ−1
f

(x−µf )

2 ,

where R and Σf are the error covariances of the observations and the background

states. Hence, best estimate of the state is

P (xt|Ot) ∝
1

2π|R||Σf |
e−

(o−Hx)TR−1(o−Hx)+(x−µf )TΣ−1
f

(x−µf )

2 . (2.20)
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Taking the natural logarithm of both sides

ln(P (xt|Ot)) ∝ constant−
(o−Hx)TR−1(o−Hx) + (x− µf )TΣ−1f (x− µf )

2
.

(2.21)

To maximize the likelihood of the state estimate, the second term on the r.h.s of

(2.21) should be minimized; this term can be defined as a cost function,

J = (o−Hx)TR−1(o−Hx) + (x− µf )TΣ−1f (x− µf ). (2.22)

Hence, the maximum likelihood estimator of the state maximizes the posterior dis-

tribution derived from a Bayesian framework, and yields the same cost function that

was used to obtain the standard Kalman Filter solution in a Least Squares sense. It

can be also shown that the best estimate of the state can be obtained as the same

solution as the Least Squares solution [(2.8) and (2.6)] by deriving (2.20).

2.4 Ensemble Based Data Assimilation studies in

Atmospheric, Oceanography, and Hydrology

Sciences

A detailed chronological listing of EnKF based publications can be found in Evensen

(2009). Here, some milestones in ensemble based studies that are used in Atmospheric,

Oceanographic, and Hydrology studies are summarized.

Kalman (1960) paved the road to recursive state estimation on which many cur-

rent data assimilation applications are based. However, the standard Kalman Filter

solution requires a linear model to temporally evolve the state and its uncertainty.
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Accordingly, early Kalman Filter applications in meteorology [Petersen (1968)] and

oceanography [Barbieri and Schopf (1982)] were performed using linear processes.

Later, some applications performed linearizations of nonlinear models in EKF frame-

work [Budgell (1986) and Lacarra and Talagrand (1988)], where the temporal evo-

lution of the error covariances requires linearization of the model while discarding

the higher order moments. Evensen (1992) and Miller et al. (1994) emphasized that

this linearization of the nonlinear error propagation assumption may lead to growing

unbounded errors. In addition to the closure problems, EKF is also computationally

very expensive for high dimensional models, as adjoints of the nonlinear model are

required to be calculated.

Evensen (1994) introduced EnKF as a stochastic alternative to the deterministic

EKF [Evensen (2009)]. Ensemble of realizations, that are created in a Monte Carlo

implementation, are propagated in time where the ensemble mean is selected as the

best estimate and the error covariance is obtained from the ensemble covariance. This

approach immediately solved the closure problem in EKF related with the propaga-

tion of the covariance. However, later Houtekamer and Mitchell (1998) used perturbed

observations; and Burgers et al. (1998) emphasized that without the perturbation of

observations the analysis error covariance would be underestimated, hence observa-

tions should be introduced as random variables through random perturbation. On

the other hand, the earlier applications of EnKF did not have any perturbation, yet

they did not have problems [Evensen (1994),Evensen and van Leeuwen (1996), and

Evensen (1997)].

Divergence of filters has been a major problem in filtering techniques; the model

error covariance is underestimated due to sampling issues and as a result observations

are weighted too little [Anderson and Anderson (1999)]. These underestimations may

lead the filter to collapse. However, it should be emphasized that the optimality of
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a filter does not imply stability [Jazwinski (1970)]; unstable Kalman filters are the

result of the simplifications or the nonlinearities that exist in the system but not

because of the underlying equations of the filter itself. Filters with lower number of

ensemble members are more prone to this underestimation than with higher ensemble

members [Hamill et al. (2001)]. Heuristic and adaptive methods are used to inflate

the underestimated error covariance: Anderson and Anderson (1999) and Anderson

(2007) inflated the error covariance with a tuned constant λ, Whitaker et al. (2008)

used an additive inflation method, Wang and Bishop (2003) used the expected statis-

tics of the innovation to find an adaptive inflation method, and Li et al. (2009) used

an adaptive method to estimate both an inflation factor and the observation errors

simultaneously.

Methods to improve the error covariance estimation particularly for larger scale

applications were investigated through limiting the effect of the neighboring grids

over the covariance estimation of a point depending on the spatial distance of the

grid. Houtekamer and Mitchell (1998) emphasized an inbreeding problem in EnKF

exists that the weights to update the forecast is calculated using the same forecast. To

handle this inbreeding effect, they have used pair of ensembles where one of the pair is

used to calculate the weights and the other is used to calculate the analysis. They have

also a cutoff radius to limit the effect of neighboring pixels on error covariances, which

also reduce the computational demand of the assimilation system. Houtekamer and

Mitchell (2001) have weighted the error covariance again with a distance dependent

method to reduce the spurious error covariance from distant grid points, which in turn

also reduces the computational power demand of the assimilation system. Ott et al.

(2004) has introduced Local Ensemble Kalman Filter (LEKF) where Earth’s surface

is divided into local regions, so that large numbers of observations can be processes

simultaneously on a much lower subspace than the number of ensemble members.
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Although many applications concluded that determining the analysis ensemble in a

stochastic way (with EnKF) performed well, deterministic ensemble filtering methods

were introduced that avoided perturbation of the observations: Ensemble Adjustment

Kalman Filter (EAKF) by Bishop et al. (2001), Ensemble Transform Kalman Filter

(ETKF) by Anderson (2001), and Ensemble Square Root Filter (EnSRF) by Whitaker

and Hamill (2002). These three deterministic filters were later shown to belong to a

single family of square root filters [Tippett et al. (2003)]. These filters generate the

same analysis error covariance from the same observation and forecast ensemble, but

generate ensembles that differ from each other by unitary transformations. Among

the infinite different square root solutions, Ott et al. (2004) showed selecting the

ensemble that gives a symmetric square root also minimizes the analysis update.

Many of the hydrologic data assimilation studies have benefited from the theoret-

ical background built previously in atmospheric and oceanographic data assimilation

studies. Among the hydrologic data assimilation studies, soil moisture attracted the

most attention, perhaps owing to its role in the predictability of the climate [Koster

et al. (2004), Dirmeyer (2006), and Dirmeyer et al. (2009)]. Early applications have

evaluated variational methods [Houser et al. (1998), Reichle et al. (2001)]. Walker

and Houser (2001) assimilated near surface soil moisture observations to investigate

the initialization problems that may occur in soil moisture profile predictions. Re-

ichle et al. (2002) assessed the performances of EKF and EnKF in a twin experiment

setup. Crow (2003) investigated a method to correct for the impact of poorly sampled

rainfall over the root zone soil moisture using TOPLATS model where the Microwave

radiative transfer parameters were taken from the study of Jackson et al. (1999).

Zhan et al. (2006) assimilated brightness temperature observations in an observation

system simulation experiment (OSSE) to investigate the potential of obtaining dif-

ferent resolution soil moisture products. Houser (2003) summarized the theoretical
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background and the applications of streamflow, soil moisture, snow, and temperature

land data assimilation studies. Walker and Houser (2004) addressed the soil moisture

measurement mission requirements in a twin experiment study. Following Friedland

(1969), De Lannoy et al. (2007) estimated the bias for the soil moisture profile by

assimilating ground measurements. Ryu et al. (2009) investigated the unintended

biases in hydrologic data assimilation framework. Reichle (2008) reviewed the data

assimilation methods used in hydrologic sciences. Recently, adaptive filtering tech-

niques were applied to improve the error estimation in land data assimilation studies

[Crow and Reichle (2008) and De Lannoy et al. (2009)]. However, these methods

require temporally uncorrelated observation errors, where the innovations are found

to have correlations [Crow and van den Berg (2010)]. An alternative approach is

proposed by Crow and van den Berg (2010) for tuning a surface soil moisture data

assimilation system.

Soil moisture observations are also used to estimate the errors of other hydro-

logical variables, like precipitation and runoff. Crow et al. (2005) assimilated satel-

lite born soil moisture data into precipitation based soil moisture proxy to improve

runoff/precipitation ratio predictions. Using the same soil moisture proxy, Crow and

Bolten (2007) assimilated soil moisture data to estimate the errors of different daily

precipitation products. Crow and Ryu (2009) assimilated soil moisture observations

to improve both the pre-storm soil moisture conditions and the storm scale cumulative

rainfall estimations.

The other hydrological observations that are also assimilated in land data assim-

ilation framework include discharge, temperature, and snow variables. Pauwels and

De Lannoy (2006) assimilated discharge rates to improve the performance of the hy-

drologic models and also analyzed different methods for their optimality in ensemble
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based discharge assimilation. Lakshmi (2000) assimilated surface temperature obser-

vations to improve the soil moisture errors. van den Hurk et al. (2002) assimilated

land surface temperature to improve numerical weather prediction (NWP) model.

Rodell and Houser (2004) assimilated snow cover observations to update snow water

storage. Andreadis and Lettenmaier (2006) assimilated MODIS snow cover obser-

vations to update snow water equivalent in a hydrologic model. De Lannoy et al.

(2010) downscaled coarse-scale SWE observations and assimilated in a Noah land

surface model. Some of the few studies focused on the water storage and its cycling

include: Zaitchik et al. (2008) assimilated Grace gravity observations to improve wa-

ter storage estimation in Mississippi River basin; following Simon and Chia (2002),

Pan and Wood (2006) performed a constrained solution to eliminate the water bud-

get residual; and Yilmaz et al. (2010) introduced the weakly constrained solution to

decrease the water balance residual (discussed in chapter 3).
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Chapter 3: Constrained Kalman Filter

3.1 Water Budget Constraint

In land data assimilation, assimilation of soil moisture (SM) results in an analysis

update that does not conserve water. In this section, a water budget constraint is

introduced to reduce the water imbalance. The water balance residual at time step t

is

rt = cTsm(SMat−1 − SMat) + ccmc(CMCat−1 − CMCat)+

cswe(SWEat−1 − SWEat) + cpPrt − ceEvt − crRnt (3.1)

where SM is a 4-dimensional vector specifying the soil moisture in each of the 4 layers;

the scalar CMC specifies canopy moisture content; the scalar SWE specifies the snow

water equivalent; the scalars Pr, Ev, and Rn specify the integrated precipitation,

evapotranspiration, and runoff respectively, during the data assimilation window;

prefactors ccmc, cswe, cp, ce, and cr are constants for unit conversion; and subscript a

denotes the analysis. Note that SM , CMC, and SWE are prognostic variables; Pr

is a forcing variable; Ev, and Rn are diagnostic variables. It is of interest to write the

residual equation as combination of state and non-state variables. For a given time

step all terms in (3.1), except for the analysis states, are known. Hence, these water

balance terms can be condensed into the form

rt = βt − cTxxt (3.2)
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where

βt = crPrt − ceEvt − crRnt + cTsmSMat−1 + ccmcCMCt−1 + csweSWEt−1 (3.3)

xt = [SM1at, SM2at, SM3at, SM4at, ST1at, ST2at, ST3at, ST4at,

SkTat, CMCat, SWEat]
T (3.4)

where βt is a known constant that holds the residual terms involving non-prognostic

variables; where SM1at, SM2at, SM3at, and SM4at are the soil moistures in the four

layers, ST1at, ST2at, ST3at, and ST4at are the soil temperatures in four soil layers,

and SkTat is the skin temperature; and cTx is the unit conversion vector, where tem-

perature terms that are not part of water balance are weighted as zero (eg. assuming

the units of SM , CMC, and SWE are same, then cTx = [1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1]) in

order (3.2) to be consistent with (3.1).

Residuals (rt) and the total column water content change (cTsm(SMat−1 − SMat))

were estimated for standard EnKF and ETKF filters (Fig. 3.1; see section 3.3.1

for more details about the model, input datasets, and the data assimilation setup).

Residuals, particularly when observations are assimilated once a day, are very high

when compared to the natural variability of the true total column content change.

Hence, the aim of this chapter is to reduce the residuals through constrained filters.

Applying a strong constraint (i.e. forcing rt = 0) would preserve the total amount

of water in the water storage terms (soil moisture at different soil layers, canopy

moisture content, and snow water content). In a system where precipitation, runoff,

and evapotranspiration are not updated, the strongly constrained solution would

redistribute the water between the storages and would preserve the total amount of

water in the storage terms. However, the problem with enforcing a strong constraint
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Figure 3.1: Residual and total column water chance variance of unconstrained EnKF
and ETKF for 3-hourly and daily assimilation frequencies. Green, black, and blue
bars indicate the total column water content change of truth, open loop, and data
assimilation simulations; and red bars indicate the residuals of data assimilation sim-
ulations.

is that the individual terms (including the non-storage terms) in the water budget

have error, and the errors themselves are not conserved. Thus, it is inappropriate to

force an imperfectly observed budget to be held exactly. One approach is to correct

the forcing terms, as described by Pan and Wood (2006). Here a weak constraint is

imposed, which accounts for uncertainty in the water budget itself.

One way to impose a residual constraint is to add another term to the cost function

(2.5) of the form λ ∗ f(r), where λ is a Lagrange multiplier and f(r) is a positive

definite function of r. For a strongly constrained solution [Simon and Chia (2002)]
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the weighting factor λ can be determined by setting the derivation of the chosen cost

function w.r.t. to λ to 0 and solving. However, for a weakly constrained system, it

is not clear how this λ should be selected. Here the penalizing function f(r) is set to

be (β − cTxx)2, and the Lagrange multiplier λ is chosen as ϕ−1, where ϕ is the error

variance of β (more details on how ϕ is calculated are given below section 3.3). Note

that the Lagrange multiplier is objectively estimated. Hence the imposed constraint

is of the form (β − cTxx)Tϕ−1(β − cTxx) , and the cost function to be minimized is of

the form

Jc = (o−Hx)TR−1(o−Hx) + (x− µf )TP−1f (x− µf ) + (β − cTxx)Tϕ−1(β − cTxx)

(3.5)

where the constraint is conceived as a third penalization function which measures the

degree of water imbalance (r = 0).

In the standard cost function (2.5), uncertainty of the observations and the forecast

are represented with error covariance matrices of R and Pf respectively, that can be

obtained from the ensemble of their anomalies. Analogously, the error variance (ϕ)

of β in (3.5) can be obtained in the form

ϕ = β
′
β
′T
/(N − 1) (3.6)

where β
′
is a vector with dimension (1,N) that holds the ensemble anomaly of β (3.3),

and it is trivially calculated from the ensemble of variables that are known.

Although the governing equations of the filters are same for land, atmopsheric,

and oceanic data assimilation studies, in general the nature of land data assimilation

systems is much different than the atmospheric and oceanographic data assimilation

systems. It is common to assume in land data assimilation studies that the errors
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in neighboring grid boxes are independent from each other and observations in each

grid are assimilated separately; hence there is no ”lateral” information exchange ex-

ists as far as the error covariance matrices are concerned. Furthermore, for many

hydrological applications, the available observations are limited to the surface layer

only, if not there are only 3-5 soil layers for many land surface models; hence there

is practically no ”depth” dimension. Briefly, in land data assimilation studies, the

ensemble size is larger than the state variable size, hence sampling size issues (hence

underestimation of Pa matrix) that apply to atmospheric and oceanographic studies

may apply on a much smaller magnitude. Perhaps this could be the reason why error

covariance inflation may not be needed, yet the ensemble analysis would not collapse

in land studies. Accordingly, in this study an analysis error covariance inflation is

not performed.

3.2 Constrained Kalman Filter

The vector x that minimizes (3.5) can be found by setting the derivative of Jc with

respect to x equal to 0 and solving. It is shown in the appendix (A.9) that the

constrained Kalman Filter solution is

µaa = µf + PaaH
TR−1(o−Hµf ) + Paacxϕ

−1(β − cxTµf ) (3.7)

where Paa is the analysis error covariance of the constrained filter which is given in

Appendix (A.5).

The Weakly Constrained Ensemble Kalman Filter (WCEnKF) solution is obtained

by updating the ith ensemble member using (3.7) where perturbed observations (o
′
)

are used instead of the observations (o) to update the ith ensemble member.

Also, it is shown in the appendix (A.14) that the Weakly Constrained Ensemble
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Transform Kalman Filter (WCETKF) is of the form Xaa = XfAaa where Aaa is the

symmetric square root of

D = (I +XT
f (HTR−1H + cxϕ

−1cTx )Xf )
−1

The square root can be obtained from the eigenvector decomposition ofXT
f (HTR−1H+

cxϕ
−1cTx )Xf .

The above constrained Kalman Filter solution can also be shown to approach

the unconstrained standard Kalman Filter solution as ϕ→∞ [see appendix, (A.18)].

Moreover, the residual of the constrained filter is shown to be smaller than the residual

of the standard filter [see appendix, (A.19)]. It is also shown in the appendix (A.18)

that the constrained Kalman Filter solution can be solved equivalently in two recursive

filters:

µaa = µa + Pacx(ϕ+ cTxPacx)
−1(β − cTxµa)

where µa = µf+PaH
TR−1(o−Hµf ) = µf+K(o−Hµf ) is the solution of the standard

KF without the constraint. This solution implies that the constrained solution can be

obtained by first calculating the solution (µa) for the standard KF, and then adjusting

this solution to take into account the constraint by adding (Pacx(ϕ+ cTxPacx)
−1(β −

cTxµa)). The single-stage and two-stage solutions yield identical WCEnKF updates,

but generally different WCETKF analysis anomaly updates due to the fact that the

single- and two-stage WCETKF equations are solved using two different matrix square

roots for the same analysis error covariances.

A strongly constrained Kalman Filter solution (A.20) can be estimated by taking
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the limit ϕ→ 0.

µaa = µa + Pacx(c
T
xPacx)

−1(β − cTxµa)

where this solution is identical to the strongly constrained solution of Simon and Chia

(2002) [(25) in their paper]. Similar to the weakly constrained solution, a strongly

constrained Ensemble Kalman Filter (SCEnKF) can be estimated by updating the

each ensemble using the above equation with perturbed observations. Similarly, a

strongly constrained Ensemble Transform Kalman Filter (SCETKF) can be obtained

by taking the limit ϕ→ 0 in (A.23) as

Xaa = Xa − PacxcTxXa/c
T
xPacx

which implies the adjustment term for the constraint in the second state is Pacxc
T
xXa/c

T
xPacx.

3.3 Sample Simulations

3.3.1 Experiment Setup

To illustrate the weakly constrained filters, synthetic experiments were performed

using the Noah land surface model [Ek et al. (2003)] version 2.7. Noah model uses

the lower atmospheric boundary fields (precipitation, humidity, air temperature at a

reference level, short–wave and long–wave, and pressure), provided by an atmospheric

model or an offline forcing data, and evaluates the hydrological variables at the surface

like soil moisture, soil temperature, evapotranspiration, runoff, etc. Soil and land

cover types in Noah are selected fixed, while the canopy and vegetation parameters

(e.g. greenness and LAI) vary in time. Noah model heritages the surface albedo,
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roughness, and surface resistance parameters from Simple Biosphere Model [SIB,

Sellers et al. (1986)] parameterization (Dorman and Sellers (1989)). Noah model

includes a frozen soil scheme following Koren et al. (1999). The Noah model states

(with memory) includes soil moisture, soil temperature, skin temperature, canopy

moisture content, and snow water equivalent. Number of soil layers is defined by the

user, which in general is chosen as 4 layers. For each layer separate water and energy

balance is calculated, where the total balances are preserved (input water equals to

output water and input energy equals output energy).

The study area was chosen to be Red Arkansas River Basin, US (between 32.0◦N

- 37.0◦N and 96.0◦W - 91.0◦W) with 0.125◦spatial resolution (Fig. 3.2). There are

total of 1521 pixels (39*39). The pixels are assumed to have uncorrelated errors.

Simulations were performed between April - October 2006 (total 4500 hourly time

steps) using hourly North America Land Data Assimilation [NLDAS; Cosgrove et al.

(2003)] forcing data (precipitation, pressure, relative humidity, wind speed, short wave

and long wave radiation, and air temperature) which have 0.125◦spatial resolutions.

Model grid spatial resolutions were selected consistent with the NLDAS data native

resolution, so that no averaging or downscaling was needed. The initial states were

generated by running the land model for 10 years, but with repeating 2006 NLDAS

forcing data in each of the 10 years where the state obtained after each year of simu-

lation is used as an initial condition for the following year. The state obtained at the

end of the 10th year were selected as the initial states for all simulations. Assimilation

of observations are performed in warm climate, where the ensemble of model realiza-

tions are simulated starting from January to provide a smooth transition before the

assimilation of observations. All initial states and the forcing data (air temperature,

short and long wave radiations, and precipitation) were perturbed (as described be-

low) to create the ensembles for all simulations. The truth run is identified as a single
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Figure 3.2: Location of the Study Area shown in red box.

run of the model with unperturbed initial condition and forcing.

The experiments were based on a ‘perfect model’assumption in which the same

model that generated the “truth”was used to generate the prior distribution. The

observation operator H equals to the identity matrix. Initial states were perturbed

using additive Gaussian noise [selected from normal distribution with (µ=0,σ=1K◦)

and (µ=0,σ=0.02%) for ST and SM respectively]. Precipitation forcing was perturbed

using multiplicative noise with a log-normal distribution (µ=1,σ=0.7); short-wave

radiative forcing was perturbed using multiplicative noise with normal distribution

[N(µ=1, σ=0.25)]; air temperature forcing and long-wave forcing data were perturbed

using additive noises with normal distribution [N(µ=0, σ=2.5 K◦) and N(µ=0, σ=10

W.m−2) respectively]. The above perturbations are independent. The precipitation

perturbation multiplication factor was limited between 0 and 4 where the actual

precipitation value was further prevented to exceed the true precipitation value with
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5mm/hour in ensemble generation. The short-wave perturbation multiplication factor

was limited between 0.2 and 1.8. Temperature and long-wave radiation perturbations

were limited to 4 times their respective standard deviations.

All forecasts were performed for an ensemble size of 50. Ensembles of Open loop

simulations (through an ensemble of model simulations without the assimilation of

observations) were simulated using the same perturbed initial states and forcings as

the assimilation experiments. Although it is not possible to remotely sense the full

SM and ST profiles with the current observation systems, there are many monitor-

ing stations that provide in-situ deep soil layer variables (i.e. Oklahoma Mesonet

Network). Hence, for the proof of concept, observations through the entire soil col-

umn were assimilated (not only the top layer). After open loop simulations were

performed and their errors were calculated, observation perturbation variances were

selected based on these open loop error variances in order to have comparable open

loop and observation realizations. Accordingly, observations were created by adding

zero mean Gaussian noise to the truth states for all four soil layers (ST perturbation

standard deviations were 0.40K◦, 0.20K◦, 0.20K◦, 0.10K◦for the four layers from top

to bottom respectively; SM perturbation standard deviations were 0.004%, 0.004%,

0.004%, 0.004% for the four layers from top to bottom respectively). Unconstrained

and constrained simulations had the same forcing and initial state perturbations as

the open loop.

3.3.2 Filter Performance Analysis

The simulations were performed for four filters (ETKF, EnKF, WCETKF, and WCEnKF),

for two types of assimilated observations (all 4 layers of SM , or all 4 layers of SM and

ST together), and for two state update frequencies (3-hourly or once a day) giving a

total of 16 sets of experiments. Soil temperature affects the water balance through
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evaporation term, hence the effect of assimilating also soil temperature is analyzed.

Only the single-stage solutions were used for the constrained filters. State error and

the water balance residual statistics were calculated for all 16 sets of experiments.

The state error statistics were also calculated for the open loop simulations (open

loop simulations have no water balance residual).

Innovation Statistics

If the assumptions on which the Kalman Filter equations were derived are true, then

the quadratic form [(o − Hx)T (HPfH
T + R)−1(o − Hx)] should have chi-squared

distribution with d.o.f. equal to the size of the observation vector. This chi-squared

statistic was calculated at each time step for each pixel and each experiment sepa-

rately. The percentage of pixels that were within the 2.5 and 97.5 percentiles was

calculated for each experiment separately. The 2.5 and 97.5 percentiles of a chi-square

distribution are 0.484 and 11.14 for 4 d.of. (for SM only updated scenario); and 2.180

and 17.535 for 8 d.o.f. (for both SM and ST updated scenario).

State Errors

Updated states during the assimilation are SM (all 4 layers), ST (all 4 layers), SkT ,

CMC, and SWE, regardless of the observed variable that is assimilated (SM , or

SM and ST ). Due to the time interval selection (April-October, no snow), snow

related variables were effectively not updated; hence snow related results were not

investigated or presented in this study. Mean square error of ensemble means (MSE)

for each of 10 states and for each of 16 experiments per pixel were calculated as

MSEs i lon lat =
∑
t

(µs i lon lat t − TSs i lon lat t)
2/(ts− 1)
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where µ is the ensemble mean state, TS is the true state, s is each state (total 11), i

is each experiment (defined above, total 16 sets), lon is longitude pixel number (total

39), lat is latitude pixel number (total 39), t is each time step, and ts denotes the

number of time steps (total 4501) respectively. Resulting MSE values for each pixel

and for all 4 soil layers were then averaged to a single number separately for ST and

SM variables and for each experiment.

RMSE.SMi =

√√√√ 4∑
sm

39∑
lat

39∑
lon

MSEsm i lon lat/(4 ∗ 39 ∗ 39))

RMSE.STi =

√√√√ 4∑
st

39∑
lat

39∑
lon

MSEst i lon lat/(4 ∗ 39 ∗ 39))

Water Balance Residual

The water balance residual was calculated for each ensemble member, at each time

step, at each pixel in the study area, and each set of experiments (total 16, defined

above). The variance and the mean of the residuals were calculated using all time

step and ensemble member values for each set of experiment and for each pixel in the

study area as:

ri lon lat . t =
∑
n

ri lon lat n t/N

ri lon lat . . =
∑
t

ri lon lat . t/ats

σ2ri lon lat =
∑
t

(ri lon lat . t − ri lon lat . .)/(ats− 1)
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where the “dot”denotes an index that is averaged out, σ2r is the residual variance,

n denotes ensemble member, and ats is the total number of time steps that the

observations are assimilated (1500 and 187 for 3-hourly and daily update scenarios

respectively), where only the residuals due to assimilation were included in the statis-

tics. Then σ2ri lon lat and ri lon lat . . values were averaged over the study area into

single number (σ2ri . . and ri . . . .) for each experiment separately.

Degree of Residual Improvement

The degree of performance change between unconstrained and constrained solutions

was assessed by a series of F-tests (simply the ratio of constrained filter residual vari-

ance over the unconstrained filter residual variance). F-tests were performed for 8

experiments separately: for both ETKF and EnKF filters; for both SM alone, and

SM and ST together assimilated cases; and for both daily and 3-hourly assimilation

frequency scenarios. For each scenario, the unconstrained residual variance to con-

strained residual variance ratio was calculated seperately for each individual pixel

in the study area. These ratios were compared to the critical F-test values at 5%

significance level (upper and lower critical values are 1.33 and 0.75 for daily, and 1.11

and 0.90 for 3-hourly assimilation frequency scenarios with 187 and 1500 residual

time-series values respectively). For each pixel and experiment an F-test value of -1,

0, or 1 were assigned for when unconstrained residual was significantly smaller than

constrained residual, when they are not significantly different, and when constrained

residual was significantly smaller than unconstrained residual respectively. All pixel

F-test values were then averaged into a single number and multiplied by 100 for each

experiment separately. Accordingly, a positive 100% represents smaller residuals for

the constrained filter for the entire area, and -100% represents smaller residuals for

the unconstrained filter for the entire area.

40



Total Column Water Change

Total column water content is defined as the summation of the total soil moisture

content (mm) for all 4 soil layers at any given time where its change is defined as,

∆WCi lon lat t =
∑
N

∑
d

(SMi lon lat n t−1 d − SMi lon lat n t d) ∗Depthd/N

∆WCi lon lat . =
∑
t

∆WCi lon lat t/ats

σ2Wati lon lat =
∑
t

(∆WCi lon lat t −∆WCi lon lat .)
2/(ats− 1)

where ∆WC is the total column water content change (mm), d is the soil layer

identifier, and ∆WCi lon lat . and σ2Wati lon lat are the mean and the variance of the

total column water change. Calculated σ2Wati lon lat values are then averaged over

the study area into a single variance for each experiment (σ2Wati . . ). For daily

update scenarios σ2Wati . . variances, similar to residual variances, were calculated

only for the time-steps of the assimilation updates.

3.3.3 Results

State Error

The result of applying a strongly constrained EnKF for a single pixel located at 34.63N

and 94.75W between May-Oct, 2006 with 3-hourly observations is shown in Fig. 3.3.

This figure shows that the strong-constrained filter produces very unrealistic soil

temperatures, in the sense that the estimates are well beyond the range of variability

of the truth. This result suggests that forcing data has large uncertainties that should

be taken into account in the filter. Hence, the remaining constraint experiments were
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Figure 3.3: Second soil layer temperature errors of strongly constrained EnKF simu-
lations

performed using weak constrained filters (WCEnKF or WCETKF).

The RMSE of all assimilation experiments, observations, and the open loop runs

are shown in Fig 3.4. In most cases, the RMSEs for the constrained filter were close

(within 2%) to the RMSEs for the unconstrained filter. The RMSEs for the con-

strained filter can be larger than for the unconstrained filter, but in these cases the

RMSEs still were much smaller than the RMSEs in observations or the open loop.

Not surprisingly, the RMSEs of a variable were much smaller than those of the cor-

responding observations or the open loop, when observations of that variable were

assimilated. However, if the observations of a variable were not assimilated, then the

RMSE of that variable can be comparable to that of the open loop, indicating very

little benefit from the filter. Three-hourly assimilation of observations has smaller

RMSEs than the corresponding daily assimilation, but not by an order of magnitude
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(even though 3-hourly assimilation was 8 times more expensive than the daily assim-

ilation). In general, the RMSEs for the EnKF, ETKF, WCEnKF, and WCETKF

were comparable to each other.

Innovation statistics were analyzed for the filter performance. Observed inno-

vations fell within the 95% confidence interval 92% to 95% of the time, suggesting

consistency with the underlying assumptions of the Kalman Filter.

Water Balance Residual

Water balance residual variances for the 16 experiments using the single-stage filters

are shown in Fig. 3.5a. In general, the time mean of the residuals differed only

slightly between the 16 sets of experiments (results not shown), where the annual

water budget is not conserved on average. The magnitude of the residual bias was

orders magnitude smaller ( 2-3% for daily simulations) than the magnitude of the

residual variance for all experiments.

Constrained filter residual variances were smaller than unconstrained filter residual

variances over all pixels in the study area regardless of the update variable (SM alone,

or SM and ST together), filter (WCETKF vs ETKF, or WCEnKF vs EnKF), or

update frequency (3-hourly or daily) selection (Fig. 3.5a). The residual variances of

the constrained filters were 14% to 44% less than those for the unconstrained filters.

Two-stage WCETKF was performed using the unconstrained ETKF square root

for the first stage. Two-stage WCETKF has consistent tendency to have higher (but

not significant) state errors than the single-stage WCETKF errors, whereas two-stage

WCETKF residuals were almost identical with the single-stage WCETKF residuals

(results not shown).
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Degree of Residual Improvement

Signifance of the residual differences between unconstrained and constrained filters

were checked for various scenarios: for assimilated variables SM alone, and SM and ST

together; for ETKF and EnKF filters; for 3-hourly and daily assimilation frequencies.

Constrained residuals were significantly smaller than the unconstrained residuals for

all the pixels (except for a small percentage of the study area for ETKF when SM

was assimilated) regardless of the assimilated frequency, assimilated variable, and the

filter selection (Table 3.1).

Table 3.1: F-Test results for residual variances of constrained and unconstrained so-
lutions. AF-24 and AF-03 represent the daily and 3-hourly assimilation experiments.
Values represent the percentage of pixels that the constrained residual variances were
significantly smaller than the unconstrained filter residual variances.

AF-24 AF-03

ETKF SM-ST 100. 100.
ETKF SM 98. 100.
EnKF SM-ST 100. 100.
EnKF SM 100. 100.

Total Column Water Content Change

Cross comparisons of the variances of the total column water content were performed

for the 16 sets of assimilation experiments, the truth, and the open loop simulations

(Fig. 3.5b).

The water content change variance of the open loop simulations was slightly lower

than that of truth simulations. The constrained assimilation experiments had 14%-

33% smaller total column water change than the unconstrained experiments regardless

of the assimilation frequency, observed variable, or the filter selection (Fig. 3.5b), sup-

porting the above discussed residual results that the constrained filters were closer to
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the truth simulations with respect to their closure of water cycling than unconstrained

filters.

Total column water change in an assimilation experiment can be conceived as the

summation of the true change plus the residual added due to the assimilation update.

Comparison of the residual variances against total water change for the assimilation

experiments indicates 70% of the total water change was due to the residual for daily

assimilations where this ratio was around 30% for 3-hourly assimilation experiments

(Fig. 3.5a and Fig. 3.5b); suggesting that in the absence of frequent observations

the obtained total soil moisture content change is heavily affected from the residuals

along with the true soil moisture change.

Sensitivity of ϕ

Estimation of ϕ in an objective way from the ensemble of realizations with the above

described methodology (3.6) improves the residuals with little effect on the state

errors. The effect of inflating (or deflating) the ϕ values and using constant ϕ val-

ues rather than being objectively estimated (Fig. 3.6) scenarios were investigated.

These simulations were performed for 117 pixels located between 32.0◦N 32.375◦N

and 96.0◦W 91.0◦W with 3-hourly observations. An apparent trade-off was found

between the state errors and the residuals: the more the ϕ values were deflated (con-

straint was applied stronger), the more the state errors were increased and the more

the residuals were decreased (Fig. 3.6). Applying the constraint too strongly (with

inflation factor of 0.001 or using constant 0.001 ϕ values) resulted in state errors equal

to observation errors, suggesting no additional benefit from the filter, whereas apply-

ing the constraint too weakly (by inflating ϕ 5 times or using constant ϕ values of 5)

resulted in residuals that are very close to residuals of the unconstrained simulations.

In this sensitivity study, the range of constant (tuned) ϕ values were chosen based
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on a priori information obtained from objective estimation. SM error–residual trade

off performance of WCEnKF was better than the performance of WCETKF. Objec-

tive estimation of ϕ had same performance with the estimation through tuned ϕ for

WCEnKF; whereas for WCETKF using tunable parameter gave better performance

than objective estimation. Hence, in this study we conclude there is no universal

solution in selection of tuning or inflating ϕ; for some filters tuning gives better, for

some inflation avoids tuning ϕ.

Optimality of the constrained filter depends on the goal of the specific application;

depending on the priority given to the state error or the residual error, ϕ can be

inflated or deflated to improve one error while degrading the other one at a different

magnitude (Fig. 3.6). In general, in hydrological studies, having smaller state error

is generally preferred. From this point of view, smaller residuals can be obtained

without degrading the state errors noticeably. For example, inflating ϕ values with

factors of 0.50–0.75 gave almost the same state errors with the standard EnKF, while

it reduces the residuals to less than half of the standard EnKF. Objectiveness of how

a constant ϕ value can be selected is still questionable; however similar results can be

obtained by tuning the ϕ values prior to the simulations. The objective selection of a

tuned ϕ value or an inflation factor could be less of a problem for reanalysis type of

studies; whereas for an operational platform, particularly in a changing system, the

selection of tuned ϕ could be more critical.
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Figure 3.6: SM error and residual relation for varying Phi values, where both SM and
ST observations are assimilated using 50 ensemble members. Each line represents
series of simulations using 16 different constant values or 16 different inflation values
(Both inflation and constant values were selected as 0.001, 0.01, 0.05, 0.10, 0.25, 0.50,
0.75, 0.90, 1.00, 1.20, 1.50, 2.0, 5.0, 10.0, 20.0, and 50.0). Single points represent single
simulations of constrained filters with un-inflated values or of unconstrained filters.
For both constant and inflated experiments, higher residuals are result of higher ϕ
values and lower residuals are result of lower ϕ values (Inflation or constant ϕ values
increase from left to right for green and red lines). Observation error is also marked
with a black diamond. The residuals and the errors asymptotically approached to
those of unconstrained simulations or strongly constrained simulations as the inflation
factors for or the constant value was increased to or decreased to 0 respectively.
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Chapter 4: No Perturbed Observations and No

Constraint Anomalies

In section 2.4, we showed why perturbation of observations is necessary and with-

out the perturbations the analysis error covariance is underestimated. On the other

hand, before this underestimation was noted by Burgers et al. (1998), several stud-

ies had already implemented the EnKF without the perturbation of the observations

[Evensen (1994); Evensen and van Leeuwen (1996); and Evensen (1997)]. Whitaker

and Hamill (2002) has presented some of the shortcomings of perturbations of ob-

servations. However, since then this issue has not been studied. Here we revisit

perturbing the observations in EnKF and compare EnKF with other filters. We

have also studies the affect of eleminating the perturbations of observations and the

constraint ensemble anomalies over the water balance residuals.

4.1 No Perturbed Observations and No Constraint

Anomalies

The constrained Kalman Filter is derived in the Appendix section by minimizing a

cost function. The solution for the state is shown in (A.9). In an ensemble aproach

(WCEnKF or WCETKF), this solution can be performed in two pieces, by estimating

the analysis mean and by estimating the analysis anomaly separately; the analysis

mean represents the best estimate of the state and the analysis anomaly represents

the uncertainty of this best estimate. Hence the mean state is fit to the mean of
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observations, forecast, and β [(3.3), holds all the water water balance terms except

for the states at the current time step], where the state anomaly is fit to the anomaly

of observations (namely the perturbations), forecast, and β′.

Although, it has been emphasized by Burgers et al. (1998) that taking O′ = 0

underestimates the analysis error covariance, it has been also pointed out that this

underestimation would not affect the updated analysis mean [Burgers et al. (1998)].

Hence, in this study, the effect of not perturbing the observations (O
′

= 0) and

removing the constraint anomalies (B′ = 0) together or individually is investigated

for different simulations.

Starting from the same initial conditions, the solutions of the EnKF and ETKF

have the same Pa, D, K, and µa; and the solutions of the WCEnKF and WCETKF

have the same Paa, D, K, and µaa. However, the analysis ensemble anomalies for EnKF

(2.11) and ETKF (2.16), as well as for the WCEnKF (A.9) and WCETKF (A.14),

are not the same. The analysis anomaly solution of EnKF requires the perturbed

observations, and the solution of WCEnKF requires both perturbed observations

and the constraint anomalies. On the other hand, the analysis anomaly solutions of

ETKF and WCETKF are obtained through square roots which do not require either

the perturbed observations or the constraint anomalies. Hence, the above proposed

removal of O′ and B′ affect only the EnKF and WCEnKF solutions but not the

ETKF and WCETKF solutions. Accordingly, EnKF and WCEnKF solutions are

modified into additional 4 filters. Including the ETKF and WCETKF, total 8 filters

are analyzed in this chapter, which all have the same analysis mean but different

analysis anomalies.

Analysis anomaly solution for the standard EnKF (with perturbed observations)

is

Xa = Xf +K(O′ −HXf ). (4.1)
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Analysis anomaly solution for the Ensemble Kalman Filter with no perturbed obser-

vations [EnKF-noPO; Whitaker and Hamill (2002)] is

Xa = Xf +KHXf . (4.2)

Analysis anomaly solution for WCEnKF is given in Appendix (A.10) as

Xaa = Xf + PaaH
TR−1(O′ −HXf ) + Paacxϕ

−1(B′ − cTxXf ). (4.3)

Analysis anomaly solution for Weakly Constrained Ensemble Kalman Filter with no

perturbed observations (WCEnKF-noPO) is

Xaa = Xf − PaaHTR−1(HXf ) + Paacxϕ
−1(B′ − cTxXf ) (4.4)

where B′ holds the ensemble anomalies of β. Analysis anomaly solution for Weakly

Constrained Ensemble Kalman Filter with no constraint anomalies (WCEnKF-noCA)

is

Xaa = Xf + PaaH
TR−1(O −HXf )− Paacxϕ−1(cTxXf ) (4.5)

and analysis anomaly solution for Weakly Constrained Ensemble Kalman Filter with

no perturbed observations and no constraint anomalies (WCEnKF-noPO-noCA) is

Xaa = Xf − PaaHTR−1(HXf )− Paacxϕ−1(cTxXf ). (4.6)

Above equations (4.1)-(4.6) are only used to derive anomalies, whereas the solutions

for the means are obtained from (B.6) and (A.9) for the unconstrained and constrained

filters respectively. The characteristic differences between these filters are summarized

below in Table 4.1.
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Table 4.1: Summary of filters and their distinctive analysis anomaly properties. O’
denotes perturbed observations and B′ denotes the presence of constraint anomalies.
A dash means the particular anomaly does not apply, 3 means the anomaly exists in
the solution, and X means the anomaly is not used in the solution.

O′ B
′

ETKF - -
WCETKF - -
EnKF 3 -
EnKF-noPO X -
WCEnKF 3 3

WCEnKF-noPO X 3

WCEnKF-noCA 3 X
WCEnKF-noPO-noCA X X

4.2 Sample Simulations

4.2.1 Experiment Setups

Separate simulations were performed for each of the above described filters (ETKF,

WCETKF, EnKF, EnKF-noPO, WCEnKF, WCEnKF-noPO, WCEnKF-noCA, and

WCEnKF-noPO-con). The setups of the experiment in this chapter were identical to

the setups described in chapter 3. Synthetic experiments were performed using Noah

model version 2.7. The study area was chosen as Oklahoma, US (between 32.0◦N −

37.0◦N and 96.0◦W − 91.0◦W) with 0.125◦spatial resolution between April − October

2006. North America Land Data Assimilation [NLDAS; Cosgrove et al. (2003)] data

were used as the atmospheric forcing. Model grid spatial resolutions were selected

consistent with the NLDAS data, so that no averaging or downscaling was needed.

Initial states were obtained after spinning the model for 10 years.

The “truth”run is identified as a single run of the model with unperturbed initial

conditions and forcing. The initial state and the forcing perturbation for both the

assimilation and the open loop experiments are described in chapter 3. Open loop
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is defined as ensemble of simulations without the assimilation of observations, where

the ensemble members are generated in the same way as in the assimilation experi-

ments. All forecasts were performed for an ensemble size of 50. Four layers of Soil

Moisture (SM) and Soil Temperature (ST) observations were assimilated once a day.

Observations were created by adding zero mean Gaussian noise to the truth states as

described in chapter 3. State error, residual, and total column water content change

statistics were also calculated similar to the methodology described in chapter 3. Sen-

sitivity analysis were also performed for all filters where the assimilation frequencies

change between hourly to daily and ensemble sizes change from 10 to 150.

4.2.2 Results

In this study variety of filters were compared, which also includes not perturbing the

observations; acknowledging eliminating the perturbations results the assumptions

behind the Kalman Filter are not fulfilled (hence filter is not optimum). SM RMS

error and residual sensitivities to the ensemble size and the assimilation frequency

were tested for EnKF, ETKF, EnKF-noPO, WCEnKF, WCEnKF-noPO, WCEnKF-

noCA, and WCEnKF-noPO-noCA filters [Table 4.1] with assimilating both SM and

ST observations.

Similar to Burgers et al. (1998), in this study not perturbing the observations

also resulted in similar state errors as the filters with the perturbed observations.

In general all filters (ETKF, WCETKF, EnKF, EnKF-noPO, WCEnKF, WCEnKF-

noPO, WCEnKF-noCA, and WCEnKF-noPO-noCA) had similar SM and ST errors

(Fig. 4.1). On the other hand, standard filters (EnKF and ETKF) had the largest

residual and total water content errors (Fig. 4.2). Not perturbing the observations

or taking the constraint anomaly as zero improved both the residual and the total

column water content change errors. In fact, WCEnKF-noPO-noCA had the smallest

54



Figure 4.1: SM and ST RMSE of ETKF, WCETKF, EnKF, EnKF-noPO, WCEnKF,
WCEnKF-noCA, WCEnKF-noPO-noCA filters for assimilation of daily SM and ST
observations with 50 ensemble members. ST errors are shown in blue color on left
y-axis and SM errors are shown in red color on the right y-axis.

residual errors.

As expected from a consistent filter, in general more frequent observations results

in smaller residuals and SM errors. Increased ensemble size did not improve SM

errors. Although the simulations with the smallest ensemble size (10 or 15 members)

in general have the highest SM errors, simulations with largest ensemble sizes (120

or 150 members) did not always have the smallest errors (Fig. 4.3).

The effect of more frequent observations on residuals was more dramatic than the

effect of ensemble member size selection (Fig. 4.3). In fact the magnitude of the

residuals remain almost unaffected from the ensemble size selection (Fig. 4.3). In
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Figure 4.2: Residual variances for various filters (in blue bars); and total column
water change variances for various filters (shown in red columns), and for truth and
open loop simulations (shown in green and black columns respectively).

general the magnitude of constrained filter residuals for a given observation assimi-

lation frequency were comparable to the residuals of unconstrained filter with higher

observation frequency (Fig. 4.3).

Among the filters, the sensitivity of EnKF was clearly different than the other

filters when higher ensemble size and high assimilation frequencies were applied to-

gether (Fig. 4.3). More specifically, the residuals of hourly EnKF increased dramati-

cally with the ensemble size increase (top left panel of Fig. 4.3). Although SM errors
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Figure 4.3: Sensitivities of the ETKF, EnKF, EnKF-noPO, WCETKF, WCEnKF,
WCEnKF-noPO, WCEnKF-noCA, and WCEnKF-noPO-noCA filter residuals and
SM errors to the ensemble size and assimilation frequency. Each panel represent a
different filter; each color in each panel represent a different assimilation frequency
varying from hourly to daily; and points with the same color and symbol represent
a simulation with a different ensemble size (10, 15, 20, 30, 50, 80, 120, and 150),
where the ensemble size increases with the increasing symbol size. All simulations
are performed with both SM and ST observations were assimilated.
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of the high frequency/high ensemble size scenario were not higher than the SM errors

of low frequency/low ensemble size scenario, the residuals of these two scenarios differ

dramatically for EnKF, which is not seen in any other filter (top left panel in Fig.

4.3). In fact the EnKF residuals of simulations with hourly assimilation frequencies

and high ensemble size were higher than the EnKF residuals with daily assimilation

frequencies and same number of ensemble size (Fig. 4.3). This behavior was unique

to the standard EnKF with perturbed observations and hourly simulations (Fig. 4.3).

More frequent assimilation of observations reduces Pa (Pa and Pf will be used, in

this chapter only, to refer analysis and forecast error covariance matrices respectively

for both the standard and the constrained filters) more, than less frequent assimilation

scenarios, which results in smaller Kalman gain (R and H are time invariant, and

K = PaH
TR−1). When observations were assimilated every 1–hour, this was true for

ETKF, EnKF-noPO, and WCEnKF but was not true for standard EnKF (Fig. 4.4).

As a result of this higher than expected Pa for 1-hourly assimilation, Kalman gain of

EnKF is also higher than other filters (4.5).

The Pa of the constrained filter is smaller than Pa of the standard filter with

the term of cxϕ
−1cTx (A.5), which is consistent with the results of 1-hourly and 6-

hourly simulations (Fig. 4.4). Perturbation of observations inflates Pa which is partly

balanced by the deflation of Pa with the constrained filter. Perhaps this is why

WCEnKF did not have the drastic residual increase as EnKF did (Fig. 4.3).

Not perturbing observations, eliminating constraint anomalies, and using the con-

strained filter all have the same effect: to shrink Pa when compared to the standard

filter. Constraining the filter with a water budget constraint does not have any ef-

fect on the optimality of the filter. However, not using the perturbed observations

and not including the constraint anomalies does (because Pa is not consistent with

its expected distribution). It can be expected from a non-optimal filter to have less
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Figure 4.4: First layer soil moisture analysis error variance histogram for EnKF,
ETKF, EnKF-noPO, and WCEnKF filters.

state prediction skill than the skill of the standard optimum filter. This could be the

reason why SM errors of WCEnKF-noPO-noCA has slightly higher errors than the

other filters (lower right panel of Fig. 4.3). In general, smaller residuals are favored by

WCEnKF-noPO-noCA whereas smaller errors are favored by WCEnKF and EnKF-

noPO (which is almost indistinguishable with the skill of standard EnKF); meaning

depending on the purpose of the study (smaller state errors or residual errors), a

different filter could be selected.

Due to the nature how K is calculated (nonlinear dependence on Pf ), *on average*

K is underestimated even though Pf may not be biased (assuming time invariant R).

Whitaker and Hamill (2002) recognized this and showed the mean absolute error of

Pa decreases with increasing ensemble size. Here we elaborate on the effect of this

ensemble size effect over this underestimation of K. The variance of Pf around its
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Figure 4.5: First layer soil moistrure Kalman gain change with the ensemble size
change.

expected (or “true”) value is larger for smaller ensemble sizes than than for larger

ensemble sizes, where Pf should converge to its “true”value for infinite numbers of

ensemble members. The magnitude of the underestimation of K depends on the de-

gree of fluctuation of Pf around its expected value: for smaller ensemble sizes the

degree of underestimation is larger than for larger ensemble sizes. It is expected that

the residuals could be more reduced for smaller ensemble sizes than for higher en-

semble sizes (smaller K = smaller residual). This is consistent with the results that

the residuals increase with the increasing ensemble sizes (Fig. 4.5). This was partic-

ularly prominent for 1-hourly EnKF simulations (Fig. 4.5). Exact reasoning for this

different behavior is unknown, but it is perhaps related with perturbation of obser-

vations (as only EnKF has it but not ETKF) when observations are assimilated too

frequently (1–hourly EnKF has it but not 3– to 24–hourly assimilation simulations).
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Chapter 5: Conclusions and Final Directions

5.1 Conclusions

In land data assimilation systems, the state updates produce a water budget imbal-

ance, called a residual. In this study, a weakly constrained data assimilation solution

was introduced to reduce the residual of standard EnKF [Evensen (1994)] and ETKF

[Bishop et al. (2001)]. The solutions of these filters for the optimum state estimation

can be found by minimizing a cost function which penalizes both the model forecast

and the observation errors weighted by their error uncertainty. Similarly, constrained

filter solutions (WCEnKF and WCETKF) were derived by minimizing a cost function

that is the summation of three terms that represent the forecast errors, observation

errors, and the water budget imbalance. These solutions were shown to be obtained

in a single stage or in two stages where the first stage is the standard solution and

the second stage is the constrained filter update. Two stage solution was shown to

be identical to the single stage solution for WCEnKF where the analysis anomaly

solutions of WCETKF differ for single and two stage solutions.

The minimization of the constraint cost function requires uncertainty estimates for

the water balance elements (ϕ). This ϕ term was estimated through a flow dependent

way from the ensembles. Optimality of ϕ was analyzed by inflating, deflating, and

using constant values of ϕ and comparing the results of these analysis with the flow

dependent method.
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In standard EnKF, observations are perturbed to satisfy the equality of the ex-

pected value of analysis error covariance. In an attempt to further reduce the resid-

uals, observations were not perturbed (acknowledging the filter is not optimum any-

more) and the ensemble constraint anomalies were removed in the solutions. Ac-

cordingly additional new filters were obtained {EnKF-noPO [Whitaker and Hamill

(2002)], WCEnKF-noPO, WCEnKF-noCA, and WCEnKF-noPO-noCA}. The role

that the model forecast, perturbation of observations, and the Kalman gain play in

the residual and state error performances of all these different filters were analyzed.

Major outcomes of this study can be summarized as follows:

• In general, the constrained solution affected the state RMSE only slightly when

compared to unconstrained solution: constrained filter errors were indistinguish-

able from the unconstrained filter errors for the majority of the experiments.

• There is little-to-no improvement in ST errors when only SM observations are

assimilated. There is also no improvement in SM errors and residuals when ST

observations are also assimilated along with SM observations.

• Water balance residual variances of weakly constrained filters (WCEnKF and

WCETKF) are smaller than that of unconstrained filters (ETKF or EnKF)

regardless of the update frequency (daily or 3-hourly) or the assimilated variable

(SM only, or SM and ST together) selection.

• There is no major difference found between single-stage WCETKF (with a

symmetric square-root) and two-stage WCETKF (with symmetric square-root

only in the first stage) when state errors and residuals are compared.

• Residuals remain unaffected from the ensemble size selection. Residuals can

be decreased either by assimilating more frequent observations or by using the
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constrained filter introduced in this study.

• Estimation of ϕ in a flow dependent way (3.6) did not give smaller SM errors

and residuals when ϕ values were selected as a constant.

• Using constrained filter compensated for the lack of observations when the resid-

ual errors are concerned.

• Not perturbing the observations reduced the residuals while preserving the SM

state prediction skill. In fact, the state errors of the scheme with non-perturbed

observations were indistinguishable from the ones with the perturbed observa-

tions.

• Removing the anomalies of the constraints reduced the residuals, however in-

creased the state errors, where the errors still remained well below the errors of

the open loop and observation errors.

• Hourly EnKF residuals using large ensemble size were much higher than the

residual of any other filter. This was primarily linked to the perturbation of

observations, high assimilation frequency, and the ensemble size. Constraining

the filter reduces this effect, whereas not perturbing the observations totally

diminishes it.

Overall, it is suggested that the constrained filter should be used if the purpose of

a particular study is concerned about the residuals. Furthermore, it is also suggested

not to perturb the observations but keeping the constraint anomalies to reduce the

residuals further without loosing the state prediction skill. Although the latter one

is obtained through a non-optimal filter, this did not cause any prediction problems

yet improved the simulations.
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5.2 Future Directions and Applications

As with the water balance, land surface models also conserve the energy balance, but

an imbalance occurs during assimilation as a result of the temperature state update.

Although an energy balance constraint was not performed, the solution implemented

in this study for water balance residuals also can be used to reduce the energy balance

residuals. In general, data assimilation of hydrological states results in an inconsis-

tency between the predicted diagnostic variables (i.e. evapotranspiration, runoff)

and the updated prognostic variables. Diagnostic variables remain unaffected from

the prognostic variable update in current hydrologic data assimilation schemes; unaf-

fected diagnostic variables and the updated prognostic variables are model predictions

for two different initial conditions. A remedy can be obtained by also updating the

diagnostic variables (eg. evapotranspiration and runoff) along with the prognostic

variables, where the error covariances for the diagnostic variables are estimated from

the ensembles [Pan and Wood (2006)]. In this study, an idealized setup was used,

where the model errors and the model parameterization errors were not taken into

account. An alternative approach could have been a fraternal twin experiment, where

the truths are generated in one model and the experiments are performed in another.

In this study, flow dependent estimated ϕ did not give superior results over a constant

value for ϕ. An alternative flow dependent methodology can be obtained where ϕ

can be treated as a parameter to be optimized inside the Kalman Filter and be solved

simultaneously with the estimated state.

In this study the residuals of the standard data assimilation techniques were re-

duced with a constrained filter. Building on this result, a better evapotranspiration

and runoff estimations could be seeked using the presented methodology. Obtaining

better fluxes through this method could be particularly important to modelers in
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parameter calibration. The constrained solution introduced in this study could be

very valuable to GEWEX community to obtain a better water and energy cycling

information as this study lays a solution to reduce the uncertainty of the water and

potentially energy budgets. In general, reanalysis data are used to obtain better anal-

ysis of historical data that were not available in the past; NCEP reanalysis [Kalnay

et al. (1996)] is one of the early examples that produced 40 years of global atmo-

spheric data. Data assimilation offers the ideal platform for reanalysis type of studies

as new methods emerge. The introduced weakly constrained filter in this study could

be used in reanalysis type of studies to acquire improved water and energy cycles.

Weakly constrained assimilation can make the reanalysis products more valuable to

the same community without making it less valuable to another community.
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Appendix A: Constrained Filter

A.1 Single-Stage Constrained Filter

A.1.1 Single-Stage Constrained Kalman Filter

Similar to the traditional Kalman Filter, a constrained filter solution can be also

obtained through minimizing the cost function in (3.5)

Jc = (o−Hx)TR−1(o−Hx)+(x−µf )TP−1f (x−µf )+(β−cTxx)Tϕ−1(β−cTxx) (A.1)

∂J

∂x
= 2(HTR−1H + P−1f + cxϕ

−1cTx )x− 2(HTR−1o+ P−1f µf + cxϕ
−1β) (A.2)

Setting derivation (A.2) to 0, the solution for the constrained filter can be expressed

as

µaa = (HTR−1H + P−1f + cxϕ
−1cTx )−1(HTR−1o+ P−1f µf + cxϕ

−1β) (A.3)

This equation can be used as a final solution to the constrained KF. However, the

analogy with the standard KF is not obvious. Below, a constrained KF filter solution

analogous to the standard solution was derived.

To ease the notation, we define S−1 = HTR−1H + cxϕ
−1cTx , then (A.3) becomes:

µaa = (P−1f + S−1)−1(HTR−1o+ P−1f µf + cxϕ
−1β) (A.4)

The notation was eased further by using the second derivation of the cost function,

which is equal to the inverse of the analysis error covariance matrix [Lorenc (1986),
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and shown in (B.5)] of the constrained filter.

∂2J

∂x2
= P−1aa = P−1f + S−1

Paa = (P−1f + S−1)−1 (A.5)

Hence, above equation (A.4) can be rewritten as

µaa = Paa(H
TR−1o+ P−1f µf + cxϕ

−1β)

µaa = PaaH
TR−1o+ PaaP

−1
f µf + Paacxϕ

−1β (A.6)

Before continuing the derivation from (A.6), another equality is introduced

Paa = (P−1f + S−1)−1

Paa(P
−1
f + S−1) = I

PaaP
−1
f = I − PaaS−1 (A.7)

Using this equality in (A.7), (A.6) can be rewritten as

µaa = PaaH
TR−1o+ (I − PaaS−1)µf + Paacxϕ

−1β (A.8)

= PaaH
TR−1o+ µf − PaaS−1µf + Paacxϕ

−1β

= µf + PaaH
TR−1o− Paa(HTR−1H + cxϕ

−1cTx )µf + Paacxϕ
−1β

= µf + PaaH
TR−1(o−Hµf ) + Paa(cxϕ

−1β − cxϕ−1cTxµf )
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and the final constrained KF equation is obtained as

µaa = µf + PaaH
TR−1(o−Hµf ) + Paacxϕ

−1(β − cTxµf ). (A.9)

Similarly the analysis anomaly in an EnKF framework can be found as

Xaa = Xf + PaaH
TR−1(O′ −HXf ) + Paacxϕ

−1(B′ − cTxXf ). (A.10)

where O′ and B′ are matrices holding the observation anomalies (namely random

numbers used for the perturbations) and the constraint anomalies respectively.

Solution of the standard KF requires computation of a single inverse, PaH
TR−1,

which can be equivalently derived as Kalman gain. Similarly, the solution of the

constrained filter can be obtained through a single inverse, PaaH
TR−1, which also

can be obtained through a single inverse,

PaaH
TR−1 = (HTR−1H + P−1f + cxϕ

−1cTx )−1HTR−1

PaaH
TR−1 = Pf

(
I + (HTR−1H + cxϕ

−1cTx )Pf
)−1

HTR−1

provided that the observation error covariance matrix (R) is assumed diagonal, hence

its inverse is trivial.

Whitaker and Hamill (2002) showed that without the perturbation of observations,

the analysis error covariance of EnKF is underestimated by a term of KRKT . The

term β holds the prognostic variables of the previous time-step analysis, fluxes, and

the forcing data, where β is obtained from ensembles (B′ 6= 0). Hence, construction

of perturbed constraints is not needed for the constrained filters.
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A.1.2 Single-Stage Constrained Ensemble Transform Kalman

Filter

Similar to the traditional ETKF solutions, WCETKF solution can also be obtained

by using analysis error covariance matrix of the constrained filter.

Paa = (P−1f + S−1)−1

= PfP
−1
f (P−1f + S−1)−1

= Pf (P
−1
f Pf + S−1Pf )

−1

= Pf (I + S−1Pf )
−1

= XfX
T
f (I + S−1Xf ∗ I ∗XT

f )−1 (A.11)
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Using the Sherman-Morrison-Woodbury formula [a reminder for the reader (A +

BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1], (A.11) can be rewritten as

Paa = XfX
T
f [I − I ∗ S−1Xf (I +XT

f ∗ I ∗ S−1Xf )
−1XT

f ∗ I]

= Xf [X
T
f −XT

f ∗ S−1Xf (I +XT
f S
−1Xf )

−1XT
f ]

= Xf [I −XT
f ∗ S−1Xf (I +XT

f S
−1Xf )

−1]XT
f

= Xf [(I +XT
f S
−1Xf )(I +XT

f S
−1Xf )

−1 −XT
f ∗ S−1Xf (I +XT

f S
−1Xf )

−1]XT
f

= Xf [(I +XT
f S
−1Xf −XT

f S
−1Xf )(I +XT

f S
−1Xf )

−1]XT
f

Paa = Xf (I +XT
f S
−1Xf )

−1XT
f (A.12)

Paa = XfDX
T
f (A.13)

where D = (I + XT
f S
−1Xf )

−1. Using eigenvalue decomposition of XT
f S
−1Xf (U

is eigenvectors and Λ is diagonal) and defining its square root as D = AaaA
T
aa, this

square root can be found Aaa = U(I+Λ)−1/2V T , where V T is unitary. These equalities

imply the solution for the anomaly of the analysis for the constrained filter can be

rewritten as

Xaa = XfAaa (A.14)

where this solution is also consistent with (A.13). After analysis anomaly is estimated,

analysis mean of the WCETKF can be estimated also from (A.9).
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A.2 Two-Stage Constrained Filter

In this section it is shown that the single-stage solution in (A.9) can equivalently be

performed in two-recursive stages where the first stage is the standard KF equations

and the second stage is the constrained filter adjustment.

A.2.1 Two-Stage Constrained Kalman Filter

Recalling (A.9)

µaa = µf + PaaH
TR−1(o−Hµf ) + Paacxϕ

−1(β − cxTµf )

and expending the terms

µaa = µf + (P−1f +HTR−1H + cxϕ
−1cTx )−1HTR−1(o−Hµf ) + (P−1f +

HTR−1H + cxϕ
−1cTx )−1cxϕ

−1(β − cxTµf ) (A.15)

Substituting inverse of the standard KF analysis error covariance P−1a = P−1f +

HTR−1H, (A.15) becomes

µaa = µf + (Pa
−1 + cxϕ

−1cTx )−1HTR−1(o−Hµf ) +

(Pa
−1 + cxϕ

−1cTx )−1cxϕ
−1(β − cxTµf ) (A.16)
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Using the Sherman-Morrison-Woodbury formula,(Pa
−1+cxϕ

−1cTx )−1 = Pa−Pacx(ϕ+

cTxPacx)
−1cTxPa, (A.16) becomes

µaa = µf +
(
Pa − Pacx(ϕ+ cTxPacx)

−1cTxPa
)
HTR−1(o−Hµf )+

(
Pa − Pacx(ϕ+ cTxPacx)

−1cTxPa
)
cxϕ

−1(β − cxTµf )

µaa = µf +
[
PaH

TR−1(o−Hµf )− Pacx(ϕ+ cTxPacx)
−1cTxPaH

TR−1(o−Hµf )
]
+

[
Pacxϕ

−1(β − cTxµf )− Pacx(ϕ+ cTxPacx)
−1cTxPacxϕ

−1(β − cTxµf )
]

µaa = µf + PaH
TR−1(o−Hµf ) + Pacx

[
ϕ−1(β − cTxµf )− (ϕ+ cTxPacx)

−1

cTxPaH
TR−1(o−Hµf )− (ϕ+ cTxPacx)

−1cTxPacxϕ
−1(β − cTxµf )

]
µaa = µf + PaH

TR−1(o−Hµf ) + Pacx(ϕ+ cTxPacx)
−1

[
(ϕ+ cTxPacx)ϕ

−1(β − cTxµf )− cTxPaHTR−1(o−Hµf )− cTxPacxϕ−1(β − cTxµf )
]

µaa = µf + PaH
TR−1(o−Hµf ) + Pacx(ϕ+ cTxPacx)

−1

[
(β − cTxµf ) + cTxPacxϕ

−1(β − cTxµf )− cTxPaHTR−1(o−Hµf )− cTxPacxϕ−1(β − cTxµf )
]

µaa = µf + PaH
TR−1(o−Hµf ) + Pacx(ϕ+ cTxPacx)

−1

[
(β − cTxµf )− cTxPaHTR−1(o−Hµf )

]
µaa = µf + PaH

TR−1(o−Hµf ) + Pacx(ϕ+ cTxPacx)
−1

[
β − cTx

(
µf − PaHTR−1(o−Hµf )

)]
(A.17)
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The two-stage solution can be written as

µaa = µa + Pacx(ϕ+ cTxPacx)
−1(β − cTxµa) (A.18)

where µa = µf + PaH
TR−1(o − Hµf ) is the standard KF solution without the con-

straint.

This solution implies that the constraint can be performed in two sequential stages:

the first stage is the standard KF (µa) without the constraint and the second stage

is the constrained filter Pacx(ϕ+ cTxPacx)
−1(β − cTxµa).

A comparison of the residual terms (β − cTxx) of the constrained and standard

filters can be performed using the two-stage solution in (A.18).

µaa = µa + Pacx(ϕ+ cTxPacx)
−1(β − cTxµa)

−cTxµaa = −cTxµa − cTxPacx(ϕ+ cTxPacx)
−1(β − cTxµa)

β − cTxµaa = β − cTxµa − cTxPacx(ϕ+ cTxPacx)
−1(β − cTxµa)

β − cTxµaa = [I − cTxPacx(ϕ+ cTxPacx)
−1](β − cTxµa)

β − cTxµaa =
[
(ϕ+ cTxPacx)− cTxPacx

]
(ϕ+ cTxPacx)

−1(β − cTxµa)

β − cTxµaa = ϕ(ϕ+ cTxPacx)
−1(β − cTxµa) (A.19)

For scalar cTxPacx > 0, ϕ(ϕ+ cTxPacx)
−1 < 1; hence the constraint shrinks the residual

of the standard filter toward zero by a rate that depends on ϕ.

It is noted that for (limϕ → ∞), the second term in (A.18) vanishes, and the

constrained filter solution equals to the standard KF solution.

Moreover, setting ϕ = 0 in (A.18), strongly constrained Kalman Filter solution is
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obtained as

µaa = µa +Ks(β − cTxµa) (A.20)

where Ks = Pacx(c
T
xPacx)

−1. This strongly constrained solution in (A.20) is identical

with the maximum probability method constrained solution of Simon and Chia (2002)

[(25) in their paper].

A.2.2 Two-stage Constrained Ensemble Transform Kalman

Filter

Two stage solution of the state anomalies for the WCETKF can be found using the

inverse of the analysis error covariance of the constrained filter:

Paa
−1 = P−1f +HTR−1H + cxϕ

−1cTx

Paa
−1 = Pa

−1 + cxϕ
−1cTx

Taking the inverse of both sides

Paa = (Pa
−1 + cxϕ

−1cTx )−1

Using the Sherman-Morrison-Woodbury formula, this can be written as

Paa = Pa − Pacx(ϕ+ cTxPacx)
−1cTxPa

Paa = Xa(I −Xa
T cx(ϕ+ cTxPacx)

−1cTxXa)Xa
T

XaaXaa
T = Xa(I − zαzT )Xa

T
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where Xaa is the analysis anomaly of the constrained filter, α = (ϕ + cTxPacx)
−1 is a

scalar, and z = Xa
T cx. A square root can be found analytically by finding a scalar

(δ) such that

(I + δzzT )(I + δzzT )
T

= I − zαzT

and rearranging the terms on both sides as

(γδ2 + 2δ + α)zzT = 0

where γ = zT z is a scalar and the solution is found as

δ± =
−1±

√
1− αγ
γ

This quadratic form gives two solutions, but only one of them produces a positive

definite square root. To determine the correct choice, we choose the solution that

renders

zT (I + δ±zz
T )z > 0

where the above quadratic form checks for the positive definiteness of (I + δ±zz
T ) for

vector z. Rearranging the above equation,

zT z + δ±z
T zzT z > 0
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Replacing δ±

γ(1− 1±
√

1− αγ) > 0

±
√

1− αγ > 0

Hence the positive root is selected:

Xaa = Xa(I + δ+zz
T )

= Xa

[
+
−1 +

√
1− (ϕ+ cTxPacx)

−1cTxPacx
cTxPacx

Xa
T cxc

T
xXa

]

The final solution for the constrained filter analysis anomaly can be found as

Xaa = Xa

[
I +Xa

T cxc
T
xXa

(
−1 +

√
ϕ(ϕ+ cTxPacx)

−1
)
/cTxPacx

]
(A.21)

which can be also rewritten as

Xaa = XaE = XfAE (A.22)

where A is the square-root multiplier matrix that is estimated from the standard

ETKF equations and E is the matrix obtained from the operations within the square-

brackets on the rhs of (A.21). This equation implies the two-stage analysis anomaly

of WCETKF (Xaa) can be obtained by first solving for the analysis anomaly of the

standard ETKF (Xa) and then multiplying it by the matrix E.

Similar to the strongly constrained KF solution, a strongly constrained ETKF
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solution can be estimated by setting ϕ in (A.21) into 0 as

Xaa = Xa − PacxcTxXa/c
T
xPacx (A.23)

WCETKF analysis anomaly of single-stage (A.14) and two-stage (A.21) solutions

differ, although they have identical solutions for the analysis error covariance ma-

trix Paa. In fact, these single-stage and two-stage solutions are two different square

root filters with the same error covariance matrixes but with different state analy-

sis anomalies. It is fairly easy to make the single-stage WCETKF square-root Aaa

(A.14) symmetric with the selection of V T = U ; whereas for the two-stage filter, it

is not immediately clear which selection for the V T matrix would make the AE term

in (A.22) symmetric. On the other hand, it is stressed that WCEnKF solutions are

identical for both single-stage (A.9) and two-stage (A.18) constrained filters.

Computationally, both standard (B.6) and two-stage constrained (A.18) KF so-

lutions require single inverse (HPfH
T + R), where the single-stage constrained KF

solution (A.9) requires two inverses [(I + S−1Pf ) and R]. Although the inverse of

R can be avoided by a diagonal observation error covariance matrix assumption, the

dimension of the term to be inverted is higher for the single-stage constrained KF so-

lution than it is for other two solutions (assuming not all state variables are observed).

Hence computationally, the two-stage solution is similar to the standard KF whereas

the single-stage KF solution is more expensive. The load for the square root filters

is the same for all standard ETKF, single-stage WCETKF, and two-stage WCETKF

solutions. They all require single inverse (R) and single eigenvalue decomposition.

Standard ETKF and two-stage WCETKF solutions require the eigenvalue decompo-

sition of the term XT
f H

TR−1HXf (2.14); this term for the single-stage WCETKF

solution is XT
f (HTR−1H + cxϕ

−1cTx )Xf (A.12).
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Appendix B: Useful matrix identities and matrix

equalities

B.1 Matrix Derivation Identities

Although complete list of matrix idetities can be found in numerous of references, it

is useful to briefly list some of them as they form the basis of the above derivations

in the first part of the appendix. For a random variable X and constants vectors c,d,

and e,

∂(XT c)

∂x
=
∂(cTX)

∂x
= c

∂(XTX)

∂x
= 2X

∂(cTXd)

∂x
= cdT

∂(XT cX)

∂x
= (c+ cT )X

∂(cTXTd)

∂x
= dcT

∂(cTXTXd)

∂x
= XcdT +XdcT

∂(cTXT eXd)

∂x
= eXcdT + eXdcT (B.1)
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B.2 Best Guess in Mean Square Sense

For a random variable x, the best estimate of x that minimizes E[(x − k)2] can be

found

E[(x− k)2] = E[(x− E[x] + E[x]− k)2]

= E[(x− E[x])2 + (E[x]− k)2 + 2(x− E[x])(E[x]− k)]

= E[(x− E[x])2] + E[(E[x]− k)2] + E[2(x− E[x])E[x]]− E[2(x− E[x])k]

= E[(x− E[x])2] + E[(E[x]− k)2] (B.2)

The first term is the variance of x and the best guess can only affect the sum through

the second term. Hence we choose the best estimate (k) of x as E[x], which vanishes

the second term and minimizes E[(x− k)2].

B.3 Hessian and Analysis Covariance Inverse

Below, it is shown that the Hessian (second derivative of the cost function) is equal

to the inverse of the analysis error covariance matrix.

J = (o−Hµa)TR−1(o−Hµa) + (µa − µf )TP−1f (µa − µf )

∂J

∂µ
= −HTR−1(o−Hµa) + P−1f (µa − µf ) (B.3)

∂2J

∂µ2
= HTR−1H + P−1f (B.4)

79



where the second derivative of the cost function (B.4) is called Hesssian. From (B.3),

−HTR−1(o−Hµt +Hµt −Hµa) + P−1f (µa − µt + µt − µf ) = 0

−HTR−1(o−Hµt)−HTR−1H(µt − µa) + P−1f (µa − µt) + P−1f (µt − µf ) = 0

−HTR−1(o−Hµt) + P−1f (µt − µf ) = HTR−1H(µt − µa) + P−1f (µa − µt)

−HTR−1(o−Hµt) + P−1f (µt − µf ) = (HTR−1H + P−1f )(µt − µa)

Multiplying both sides by their transposes, and taking the expectation of both sides,

the terms with (o−Hµt)(µt − µf ) multiplication would vanish,

(HTR−1H + P−1f ) = (HTR−1H + P−1f )Pa(H
TR−1H + P−1f )

Hence, the Hessian (B.4) and the analysis error covariance equality is found

Pa = (HTR−1H + P−1f )−1 (B.5)

B.4 Standard Kalman Filter Solution

Solution of Kalman Filter equations can be found by setting the first derivation of

the cost function (2.5)

∂J

∂x
= 2(HTR−1H + P−1f )x− 2(HTR−1o+ P−1f µf ) = 0
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Using the Sherman-Morrison-Woodbury formula,

µa =
[
Pf − PfHT (R +HPfH

T )−1HPf
]
(HTR−1o+ P−1f µf )

µa =
[
Pf − PfHT (R +HPfH

T )−1HPf
]
HTR−1o+

[
Pf − PfHT (R +HPfH

T )−1HPf
]
P−1f µf

µa = PfH
T
[
I − (R +HPfH

T )−1HPfH
T
]
R−1o+

[
I − PfHT (R +HPfH

T )−1HPf
]
µf

µa = PfH
T

[
(R +HPfH

T )−1
(
(R +HPfH

T )−HPfHT
)]
R−1o+

µf − PfHT (R +HPfH
T )−1Hµf

µa = PfH
T (R +HPfH

T )−1o+ µf − PfHT (R +HPfH
T )−1Hµf

µa = µf + PfH
T (R +HPfH

T )−1(o−Hµf )

µa = µf +K(o−Hµf ) (B.6)
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B.5 Kalman Gain in Square Root Filters

In square root filters, Kalman gain can be computed without the need of an extra

inverse once the eigenvalue decomposition (to find the square root) is performed,

K = PfH
T (R +HPfH

T )−1

K = PfH
T (R +HPfH

T )−1RR−1

K = PfH
T

[
(R +HPfH

T )−1
(
R +HPfH

T −HPfHT
)]
R−1

K = PfH
T

[
(R +HPfH

T )−1(R +HPfH
T )− (R +HPfH

T )−1HPfH
T

]
R−1

K = PfH
T

[
I − (R +HPfH

T )−1HPfH
T

]
R−1

K =

[
PfH

T − PHT (R +HPfH
T )−1HPfH

T

]
R−1

K =

[
Pf − PHT (R +HPfH

T )−1HPf

]
HTR−1

K =

[
XfX

T
f −XfX

T
f H

T (R +HXfX
T
f H

T )−1HXfX
T
f

]
HTR−1

K = Xf

[
I −XT

f H
T (R +HXf ∗ I ∗XT

f H
T )−1HXf

]
XT
f H

TR−1

K = Xf

[
(I +XT

f H
TR−1HXf )

−1
]
XT
f H

TR−1

K = XfDX
T
f H

TR−1 (B.7)

Hence, once the eigenvalue decomposition of the term XT
f H

TR−1HXf is performed,

the Kalman gain can be calculated without an extra cost.
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