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Abstract 
Automated Requirements Engineering (RE) can streamline development processes, reduce errors, and 
facilitate informed decision-making development efficiency, particularly for low-level hardware 
requirements where modifications are costly. Classification is a fundamental step in automated RE and 
is widely studied for software requirements. Yet, its applicability remains underexplored due to the 
lack of structured datasets. This study adapts and evaluates software RE classification techniques for 
hardware by extracting low-level requirements from open-source hardware design artifacts of 
Embedded Control Systems. We evaluate two classification methods: fine-tuning a BERT-based model 
and zero-shot prompting with a quantized LLM (Qwen2.5). While fine-tuning achieved high accuracy, 
zero-shot classification with specific prompts outperformed it in overall performance. Our findings 
suggest that RE automation for low-level hardware requirements may not require large, task-specific 
datasets; however, classification performance can be further improved and can serve as a supporting 
mechanism for advanced tasks. 
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1. Introduction 

Embedded Control Systems (ECS) are widely employed in automotive, aerospace, and 

consumer electronics. Their hybrid hardware-software nature and ubiquity make them an 

intriguing subject for Requirements Engineering (RE) [1]. Managing hardware requirements is 

particularly crucial, as they directly impact physical design and production—changes can be 

both costly and time-sensitive [2,3].  

Requirement classification is fundamental in RE automation and has been widely studied for 

software requirements. However, low-level ECS hardware requirements often involve strict 

quantitative constraints (e.g., minimum, and maximum values) rather than the abstract 

definitions found in software. In addition, interdependence between requirements [4] adds 

complexity, where altering one can necessitate additional changes or create new constraints. 

Despite these differences, these techniques can be adapted and evaluated with suitable datasets.  

Yet, their importance, no standardized dataset currently exists to support automation in RE 

tasks for low-level ECS hardware requirements. To address this gap, we collaborated with 

domain experts to create and annotate a dataset derived from open-source hardware design 

materials, refining inferred constraints to align with established dataset-creation frameworks. 

We then experimented with two baseline classification methods—fine-tuning a BERT-based 
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model and applying a quantized large language model (Qwen2.5) with zero-shot prompting—

evaluating their performance using precision, recall, and F1-score. Our findings suggest that in 

highly specialized domains, leveraging larger models with well-crafted prompts is a more 

efficient alternative to constructing extensive datasets for fine-tuning. Furthermore, our analysis 

of misclassified requirements underscores the critical role of context in classification accuracy. 

These insights form a basis for downstream RE tasks and more advanced applications, including 

the integration of Large Language Model guardrails for industrial deployment. 

The remainder of this paper is organized as follows: Section 2 reviews the current state of 

automated RE for natural language requirements. Section 3 describes our methodological 

approach. Section 4 reports experimental results, followed by Section 5, which addresses the 

study’s assumptions, limitations, and exclusions. Section 6 discusses our findings, and Section 7 

summarizes key insights and explores future directions for applying RE to the ECS domain. 

2. Related Work 

Automated RE has been extensively explored using natural language processing (NLP) and 

machine learning (ML) in the embedded systems domain. Applications include, but are not 

limited to, requirements modeling [5], ontology-based specification [3], and named entity 

recognition (NER) for requirement analysis [6].  Although the application of automated 

requirements classification tasks in the context of embedded systems is not particularly popular, 

it is widely studied in the field of software engineering [7]. Recently transfer-learning 

approaches have shown their effectiveness both through approaches such as fine-tuning [8,9] 

and through approaches such as prompting [10,11] for software requirements classification. 

However, these methods rely on structured requirement datasets, limiting their direct 

applicability to ECS and hardware requirements due to the numerical and physical constraints 

that complicate direct adaptation.  

In adjacent domains like chip design [12,13], LLMs have been employed for design validation 

and documentation synthesis, demonstrating their potential in processing technical constraints. 

Their applications extend across various industries, including aerospace [14] and automotive 

[15], underscoring the versatility of LLMs in solving complex engineering problems in different 

domains. However, such applications typically require domain-specific fine-tuning, a challenge 

given the lack of open datasets for hardware RE. It is a significant barrier to their broader 

application is the lack of open datasets tailored to domain-specific tasks. The performance of 

LLMs is highly dependent on the quality and relevance of the datasets used for training and 

evaluation [16]. 

Although zero-shot learning allows LLMs to operate in the absence of domain-specific 

datasets, its limitations become evident as even advanced models can struggle in such settings 

[17]. Therefore, the creation of high-quality datasets is indispensable. This study addresses these 

gaps by adapting NLP-driven RE techniques to a dataset derived from hardware design sources, 

exploring LLM-based classification within the constraints of ECS hardware requirements. To this 

end, annotation development frameworks, such as the MATTER cycle [18], along with dataset 

documentation frameworks [19-22] are essential for preparing robust datasets that support the 

effective application of LLMs in new domains. 

3. Research Design 

3.1. Research Questions & Scope  

This study investigates the feasibility of adapting RE classification techniques widely used in 

software engineering to ECS hardware requirements. To structure our investigation, we define 

the following research questions: 



• RQ1: What are the challenges in creating a representative annotated requirements 

corpus from hardware design sources to enable automated classification? 

• RQ2: How effective are fine-tuning and zero-shot approaches with large language models 

(LLMs) at accurately classifying ECS hardware requirements? 

RQ1 addresses the methodological challenges by investigating how to extract, annotate, and 

validate hardware requirements in a structured manner. RQ2 evaluates the ability of existing 

classification techniques, adapted from software RE, to perform effectively in the hardware 

domain. 

3.2. Dataset Creation Process & Its Practical Implications  

In our case, hardware requirements are embedded within circuit diagrams, technical 

documentation, and component datasheets, unlike common software RE datasets compiled from 

textual specifications. Therefore, we developed a hardware requirements dataset by reverse-

engineering design artifacts from open-source ECS projects.  This approach introduced several 

challenges addressing RQ1:  

• Implicit vs. Explicit Requirements: Unlike explicitly defined requirements, low-level ECS 

hardware requirements need to be inferred from design constraints and physical 

elements. 

• Interdependencies: Hardware requirements can exhibit a higher degree of 

interconnectivity and interdependency; a single modification in one requirement often 

cascades into multiple downstream constraints. 

• Quantitative Features: Unlike software requirements, which frequently describe system 

functionalities, hardware requirements predominantly involve numerical constraints 

(e.g., voltage ratings, timing requirements, temperature tolerances). 

• Size: To ensure effective model training, the dataset should be sufficiently large, ideally 

making it comparable to established RE datasets such as PROMISE [23].  

To overcome these challenges, we adopted an iterative annotation framework with DEs. We 

systematically managed both the requirement writing and annotation processes using 

guidelines developed according to the MATTER cycle [18]. This annotation development cycle, 

recognized within the RE community [24,25], employs an iterative and incremental approach to 

ensure accuracy and reliability throughout the dataset creation process. The details of the 

process are presented in the following subsections. 

3.2.1. Domain Expert Selection 

The selection criteria for the contributing DEs were critical to the creation and annotation of the 

ECS requirements corpus. As emphasized by [26], experts must demonstrate significant skills, 

knowledge, and experience. Addressing these, three electrical and electronics engineers with 10 

to 15 years of experience in the R&D departments of ECS/embedded systems, contributed 

voluntarily to this study. Bayerl and Paul [27] recommend that annotators possess comparable 

domain knowledge and receive appropriate training. Accordingly, comprehensive training 

sessions on RE and NLP tasks were provided to the DEs.  

3.2.2. Classification Problem 

The DEs identified five basic functionality categories by analyzing the functional blocks of the 

ECS, which form the basis of the annotation problem (Table 1).  Our labeling structure was 

designed to imitate the general architecture of feedback control systems. While alternative 



taxonomy approaches, such as categorization based on design expertise (e.g., analog, digital, or 

power circuit design), could have been applied, we determined that a more pragmatic, 

exploratory classification was appropriate since no clear guideline exists in the ECS domain to 

support it yet. Finally, we aimed to make the categories as inclusive as possible while ensuring 

broad applicability across different ECS application domains.  

Table 1  

The five functional categories 

Label Category Definition 
F Feedback Any requirement defining a specification for sensing the controlled physical entity. 

Typically, they may refer to current delivered to the controlled load, position information 
according to the controlled motion of an actuator, pressure, humidity, or temperature. 

C Controller Any requirement defining a specification for the “smart” functionalities regarding the 
processing cores of the system. Typically, any requirement consisting of any digital or 
analog control specification including processing or memory capabilities relates to this 
category. 

I Interface Any requirement defining a specification for the connections of the system and the 
external world, as well as physical user interfaces such as buttons, switches, status LEDs, 
screens, etc. 

P Power Any requirement defining a specification for managing the power delivered to or from the 
system. These include conversion, limits, fluctuation, EMI/C specifications, as well as 
power lines of the system peripherals such as sensors. 

D Driver Any requirement defining a specification for driving the controlled load. Typically, the load 
may refer to electric motors, heaters, fans, pumps, or any type of actuator. 

 

3.2.3. OSHW ECS Project Selection 

[18] emphasize that to prevent bias in model training, over-representation of features rarely 

encountered in real-world scenarios must be avoided. To represent a product inventory 

emulating an industrial setting that can be used for AI training, we selected source projects based 

on the following criteria: (1) permissive licensing, (2) representation of real-world ECS 

applications, (3) diversity in products and functional blocks to enhance dataset 

representativeness, and (4) availability of structured design documentation.  

Eight open-source ECS projects were selected from the project list maintained by the Open-

Source Hardware Association or published in the open-source hardware journal HardwareX.  

Each selected project underwent review and consensus by the DEs to ensure alignment with the 

mentioned four criteria. The selected projects represent a diverse range of physical entities, 

including pressure, weight, and velocity, and involve control instruments such as pumps and 

fans. Table 2 presents the complete list of projects along with their IDs and functional domains. 

The functional domain descriptions here aim to provide insight into system complexity, 

component dependencies, and diversity across projects. For example, domains like robotics and 

power electronics feature tightly integrated components, while food processing and agricultural 

automation rely on more modular architectures. This also reflects the variety and number of 

components, as different domains inherently require distinct sets of sensors, actuators, and 

control mechanisms, ensuring a representative dataset of diverse functional blocks. 

Table 2 

List of selected open-source ECS projects 

Project 
ID 

Source Functional Domain 

P001 [28] Generic Embedded Control Systems (Flexible IoT control board for various applications) 
P002 [29] Robotics (Hydraulic quadruped robot control system) 
P003 [30] Additive Manufacturing (Multifunctional extruder with sensing and monitoring capabilities) 
P004 [31] Food Processing & Preservation (Automated dry-aging system for beef) 
P005 [32] Actuator Control (High-current driver for magnetic actuators) 



P006 [33] Agricultural Automation (Automated sensing and control for irrigation scheduling) 
P007 [34] Environmental Monitoring (Autonomous ocean profiler for hazardous area measurements) 
P008 [35] Power Electronics (Modular control platform for voltage source inverter) 

 

3.2.4. Requirement Extraction and Annotation 

Our reverse-engineering approach for extracting and annotating requirements from hardware 

projects has two key aspects: (1) Expert-Guided Requirement Identification, where DEs defined 

extraction guidelines, manually extracted them from design documents and categorized 

requirements; (2) Iterative Annotation and Refinement, where DEs refined guidelines, 

requirements, and dataset through consensus-based adjudication. For example, DE review 

meetings identified ambiguities, especially in multi-PCB projects and connector requirements. 

The guidelines were then revised to focus on electronic circuit structures while excluding 

mechanical and environmental constraints, as they had minimal impact on functional 

categorization. 

The process resulted in 366 requirements from eight projects over 191 DE hours spanning 

184 days.  Resulting annotation consistency was assessed using recommended [36,37] Inter-

Annotator Agreement (IAA) metrics: Fleiss’ Kappa (0.76) and Cohen’s Kappa (0.66–0.74), 

indicating strong agreement. Based on these scores labeling repetition was unnecessary. 

However, the adjudication process aimed to establish a gold standard by achieving consensus 

among annotators, ensuring high data quality through error correction and consistency checks.  

During adjudication meetings, non-consensus requirements were reviewed through 

discussions where DEs explained their classification rationale. If disagreements stemmed from 

requirement quality issues, such as violations of agreed-upon guidelines or inconsistencies with 

the design artifacts, necessary corrections were made to align them with the established criteria. 

Requirements that failed to meet technical sufficiency standards were either revised or removed, 

ensuring coherence and reliability in the final dataset. As a result, 28 out of 366 requirements 

were removed due to insufficient technical details, while 24 were modified to resolve 

ambiguities. These refinements addressed violations of predefined guidelines but did not 

introduce a significant shift in distribution or category representation. 

The final gold standard revealed category imbalance, reflecting real-world distributions. 

Project-level requirement distributions varied based on complexity, and differences among the 

three DEs’ annotations were influenced by their distinct writing styles. These variations are 

summarized in Table 5, while the finalized dataset's statistical distribution is presented in Table 

4. 

Table 4 

Statistical Distributions of the Adjudicated ECS Dataset. 

 Count 
Percentage 

(%) 

Label Distribution 

I 99 29.29 
P 77 22.78 
F 77 22.78 
D 55 16.27 
C 30 8.88 

Source HW Project  
Distribution 

P006 59 17.51 
P005 48 14.24 
P002 47 13.95 
P007 44 13.06 
P001 37 10.98 
P003 36 10.68 
P004 35 10.39 
P008 31 9.20 

DE Distribution DE003 125 36.98 



DE002 110 32.54 
DE001 103 30.47 

Table 5 

DE writing styles across four original “Feedback” requirements targeting the same functionality. 

DE ID Requirement 
DE001 The system shall be capable of measuring relative humidity and temperature with 

accuracy 2.0% and 0.5C respectively that communicate over SPI with the sensor. 
DE002 The system shall measure relative humidity (RH) with an accuracy level of  ±2.0% 

and temperature with an accuracy level of  ±0.5% via sensor with digital output.   
DE003 The system shall read relative humidity sensor with accuracy ± 2.0% 
DE003 The system shall read a temperature sensor with accuracy ± 0.5 °C 

 

3.3. Classification Models & Experimental Setup 

In this study, we applied and compared two baseline approaches: fine-tuning a BERT-based 

classifier, NoRBERT, and utilizing a quantized large language model, Qwen2.5, with zero-shot 

prompting. NoRBERT was selected for its strong performance in software requirement 

classification compared to contemporary methods, while Qwen2.5 was chosen for its 

competitive benchmark results among open-source large language models. 

3.3.1. Baseline Model: A Fine-tuned Approach with BERT 

We utilized NoRBERT [8] as a baseline model for classifying ECS requirements, leveraging BERT-

based transfer learning, which has reported F1 scores of up to 94% in multi-class software 

requirement classification performance. However, due to differences in classification schemes 

and domain-specific terminology, the pre-trained NoRBERT model could not be directly applied 

in this study. Instead, we adopted NoRBERT's methodology and tailored it for classifying ECS 

requirements in our domain-specific context. 

3.3.2. Zero-shot ECS Requirement Classification with LLMs 

 Given the limited availability of datasets, prompt-based classification with LLMs is a viable 

alternative to dataset-heavy fine-tuning methods. Our zero-shot prompting approach consisted 

of two main steps: Prompt Design and Model Selection/Setting. 

In Prompt Design, we adapted the strategy and methodology from [10], who applied similar 

techniques in the RE domain to develop prompts that leverage the pre-trained capabilities of 

LLMs for multiclass requirement classification. Their study, which utilized the GPT-3.5 Turbo 

API for RE tasks, proposed an evaluation framework for selecting prompt patterns. Based on 

their recommendations, we considered four prompt patterns, which were shown to be effective 

for the binary classification of software requirements. Table 6 demonstrates how we adapted 

these patterns to the ECS low-level requirements classification problem. 

Table 6 

Designed Zero Shot Prompt Patterns for ECS Requirements Classification 

Pattern (ID) Prompt 

Cognitive 
Verifier (1) 

Classify the given hardware requirement into one of the five functional labels. These labels are 
feedback (labelled as F), driver (labelled as D), interface (labelled as I), power (labelled as P) and 
controller (labelled as C). The label definitions are as follows: (…) Ask me questions if needed to 
break the given task into smaller subtasks. All the outputs to the smaller subtasks must be 
combined before you generate the final output. The requirement: (…) 

Context 
Manager (2) 

Classify the given hardware requirement into one of the five functional labels. These labels are 
feedback (labelled as F), driver (labelled as D), interface (labelled as I), power (labelled as P) and 
controller (labelled as C). The label definitions are as follows: (…) When you provide an answer, 
please explain the reasoning and assumptions behind your response. If possible, address any 



potential ambiguities or limitations in your answer, to provide a more complete and accurate 
response. The requirement: (…) 

Persona (3) 

Act as a requirements engineering domain expert in embedded control systems and classify the 
given hardware requirement into one of the five functional labels. These labels are feedback 
(labelled as F), driver (labelled as D), interface (labelled as I), power (labelled as P) and controller 
(labelled as C). The label definitions are as follows: (…) The requirement: (…) 

Question 
Refinement 
(4) 

Classify the given hardware requirement into one of the five functional labels. These labels are 
feedback (labelled as F), driver (labelled as D), interface (labelled as I), power (labelled as P) and 
controller (labelled as C). The label definitions are as follows: (…) Ask me questions if needed to 
break the given task into smaller subtasks. All the outputs to the smaller subtasks must be 
combined before you generate the final output. If needed, suggest a better version of the question 
to use that incorporates information specific to this task and ask me if I would like to use your 
question instead. The requirement: (…) 

 

We considered the model selection criteria based on potential needs that may arise in 

industrial use, as ECS design teams typically prioritize solutions that align with their operational 

and technical constraints. These include: (1) non-commercial solutions to address data privacy 

and control concerns, (2) scalable solutions that do not require significant local computation 

investments, and (3) less restrictive licenses for broader adaptability. Based on these criteria, 

we selected a quantized variant of the instruction-tuned QWEN-2.5 family model. These models 

can be locally hosted on a single machine using popular open-source libraries, such as llama.cpp 

and GPT4All [15]. 

3.3.3. Experimental Setup 

Various methods exist for splitting datasets into training, validation, and test sets, such as 

random or stratified sampling. However, in this study, requirements from two entire projects 

were held out as the test set to prevent data leakage and ensure evaluation on a distinct dataset. 

The DEs selected these projects by consensus, choosing one that closely resembled the others in 

terms of diversity and complexity and another that was least similar. This strategy enabled a 

more comprehensive assessment of the model’s generalizability. The test set was strictly 

excluded from all stages of the study, including training, fine-tuning, and model selection 

experiments. 

NoRBERT baseline model was fine-tuned using the remaining six projects, with 

hyperparameters optimized via Grid Search. Training and inference were conducted on Google 

Colab using a Tesla T4 GPU. For Qwen2.5-72B-Instruct, the llama.cpp library was used on a local 

machine with 24 CPU cores, 256 GB RAM, and 8 GB GPU RAM. The key non-default parameters 

used included a context size of 32,000, 24 threads, an RNG seed of 33, a temperature set to 0, and 

a maximum token limit of 500. Each requirement was processed individually to prevent cross-

influence, and results were logged separately. To ensure inference independence, the model was 

reloaded for each requirement.  For handling anomalies in prompting results, we treated the 

following cases as misclassifications: when the model ignored requirement details, generated 

outputs outside the five predefined categories or returned null. 

4. Results 

This section presents the results of the classification of ECS low-level hardware requirements, 

addressing RQ2 through the evaluation of two models: fine-tuned BERT and zero-shot Qwen-2.5, 

applied with four distinct prompt patterns.  

Table 7 summarizes the performance of the four prompt patterns: (1) Cognitive Verifier, (2) 

Context Manager, (3) Persona, and (4) Question Refinement, evaluated using Qwen-2.5 (N) 

and fine-tuned BERT (T-0) on a hold-out test set. The results are presented for each category, 

with metrics for precision (P), recall (R), and F1 score (F1) provided for each label. 



Since the dataset includes labels with varying numbers of samples (support values), the last 

row of the table reports the average performance across all labels, providing a holistic view of 

each model's classification capabilities. 

Table 7 

The experiment results for the hold-out test set. 

             Classifier 

Category 
N-1 N-2 N-3 N-4 T-0 

Feedback 
(Support: 24) 

P 0.89  0.89  0.91  0.90  0.82 
R 0.71  0.71  0.83  0.75  0.75 

F1 0.79  0.79  0.87  0.82  0.78 

Interface 
(Support: 32) 

P 0.78  0.77  0.83  0.81  0.81 
R 0.91  0.94  0.94  0.94  0.94 

F1 0.84  0.85  0.88  0.87  0.87 

Controller 
(Support: 7) 

P 0.60  0.75  0.86  0.55  1.00 
R 0.86  0.86  0.86  0.86  0.86 

F1 0.71  0.80  0.86  0.67  0.92 

Driver 
(Support: 13) 

P 0.92  0.92  1.00  1.00  1.00 
R 0.85  0.85  0.85  0.69  0.62 

F1 0.88  0.88  0.92  0.82  0.76 

Power 
(Support: 16) 

P 1.00  1.00  1.00  1.00  0.74 
R 0.88  0.88  1.00  0.94  0.88 

F1 0.93  0.93  1.00  0.97  0.80 
A 0.84  0.85  0.90  0.85  0.83 

w.F 0.84  0.85  0.90  0.85  0.82 

 

The results indicate that the Qwen-2.5 model with the Persona prompt pattern (N-3) 

generally achieves the most balanced performance among the evaluated configurations. Analysis 

of the confusion matrices reveals that N-3 reduces certain types of misclassifications compared 

to the fine-tuned BERT model (T-0). For instance, N-3 does not misclassify "Power" as 

"Feedback," whereas T-0 records two such errors. Additionally, N-3 demonstrates improved 

accuracy in distinguishing between "Driver" and "Power." However, confusion between 

"Interface" and "Feedback" persists across both models, indicating a common challenge in these 

categories. 

For fine-tuning models, a separate hold-out set and training set are required, whereas zero-

shot settings eliminate this need. Therefore, we also evaluated the Qwen-2.5 model using the full 

dataset, comprising all 338 requirements, under the same configuration. The results, as 

summarized in Table 8, demonstrate an overall improvement in performance compared to the 

hold-out set, with category-level consistency largely maintained. While the performance of N-3 

declines slightly as other models improve, it remains the best-performing configuration overall. 

Table 8 

The experiment results for the complete dataset. 

             Classifier 

Label 
N-1 N-2 N-3 N-4 

Feedback 
(Support: 77) 

P 0.85 0.92 0.92 0.88 
R 0.78 0.77 0.84 0.82 

F1 0.81 0.84 0.88 0.85 

Interface 
(Support: 99) 

P 0.85 0.80 0.84 0.86 
R 0.88 0.95 0.94 0.87 

F1 0.87 0.87 0.89 0.86 

Controller 
(Support: 30) 

P 0.68 0.79 0.77 0.63 
R 0.90 0.87 0.77 0.90 

F1 0.77 0.83 0.77 0.74 

Driver 
(Support: 55) 

P 0.94 0.92 0.94 0.98 
R 0.87 0.87 0.89 0.85 

F1 0.91 0.90 0.92 0.91 
Power P 0.92 0.93 0.93 0.91 



(Support: 77) R 0.87 0.86 0.88 0.82 
F1 0.89 0.89 0.91 0.86 

A 0.86 0.87 0.88 0.85 
w.F 0.86 0.87 0.88 0.86 

 

5. Threats to Validity 

Our dataset is based on open-source ECS projects, which may not fully represent industrial 

requirements. Since contributions were voluntary, only three non-native speakers (but 

proficient) DEs participated, potentially limiting annotation consistency and introducing 

subjective variations.   Similarly, we manually selected the test set by consensus to evaluate 

generalization on more challenging projects, though we acknowledge that this choice may 

introduce bias. While the DEs were highly skilled in technical domains, they lacked prior 

expertise in computational linguistics or annotation processes. Additionally, differences 

between LLM and library versions may significantly impact the obtained results. Contextual 

ambiguity also remains a challenge, as hardware requirements were classified without explicit 

system-wide references. To mitigate these issues, training sessions were held for the DEs, 

annotation guidelines were refined to minimize ambiguity, the adjudication process was applied 

at each iteration, and misclassifications were thoroughly analyzed to assess model errors. 

While the dataset and code remain unpublished due to ongoing PhD research, we provide a 

detailed methodology and analytical framework to ensure transparency and support 

reproducibility within the constraints of our current research phase. 

6. Discussion  

This study explored how software RE classification techniques can be adapted for low-level ECS 

hardware requirements, addressing dataset construction challenges (RQ1) and classification 

performance (RQ2).  

Extracting low-level hardware requirements posed challenges related to the need for 

inferring them from circuit constraints and component specifications rather than explicitly 

stated as a formal textual extraction. We experienced firsthand the labor-intensive process, a 

difficulty widely acknowledged in the literature [16]. Our requirements were inherently implicit, 

derived from design constraints and physical limitations rather than explicitly stated. However, 

the framework outlined in [18] provided a structured approach to managing [19-22] this 

process. Despite adhering to established guidelines, the domain’s complexity led domain experts 

to perceive strong interdependencies and a critical need for contextual understanding when 

evaluating individual requirements. Furthermore, constructing a dataset comparable in size to 

established benchmarks like PROMISE [23] demanded considerable effort, and in our case, we 

could only generate a dataset approximately half its size. 

Our findings on the classification performance indicate that the fine-tuning approach 

performed well on structured hardware requirements, but zero-shot classification with prompt 

engineering outperformed the fine-tuned approach in certain cases, reducing reliance on dataset 

curation. Aligning with the most related work in software RE [8-11], fine-tuning remains 

effective but demands high-quality datasets, technical expertise, and computational resources. 

However, contrary to [17], we observed that the zero-shot approach yielded better results for 

our case, considering the domain and dataset size. However, unlike software requirements, 

hardware constraints introduce strong interdependencies that make classification sensitive to 

contextual ambiguity. Misclassified cases, particularly within the Interface category, often 

stemmed from pre-consensus disagreements among domain experts. A review of adjudication 

meeting notes revealed that ambiguous cases frequently involved multi-board projects, where 

internal and external interfaces were not always distinguishable without context. This suggests 



that for low-level hardware requirements, context is crucial for classification accuracy. Providing 

the full set of requirements or key system attributes could significantly improve performance. 

This ambiguity underscores the need for new approaches to ECS requirement handling, 

advocating for hybrid methods and prompt engineering in future RE research. 

These results suggest that classification alone is insufficient for ECS low-level hardware RE in 

our case. Instead, functional labels can serve as a supporting mechanism downstream and 

advanced tasks. 

7. Conclusion and Future Work 

This study assessed the feasibility of applying software RE classification techniques to ECS 

hardware requirements. Dataset construction (RQ1) highlighted challenges in extracting 

requirements from design artifacts and developing a structured classification protocol, 

demanding domain expertise and iterative refinement. Model evaluation (RQ2) found that well-

crafted zero-shot LLM prompts can outperform fine-tuned BERT models, eliminating the need 

for extensive dataset curation and fine-tuning. The findings highlight inherent ambiguity due to 

the interdependencies in low-level hardware requirements, particularly when analyzed 

individually versus holistically. 

While classification currently serves as an auxiliary task in our case, it can enable systematic 

RE methodologies in ECS design for downstream tasks like analysis, verification, validation, 

testing, etc. Future work will explore dataset expansion & its open-access release as well as 

confidence-aware systems integrating human-in-the-loop approaches to enhance classification 

reliability. Additionally, understanding prompt efficiency can help reduce classification errors 

and improve requirement quality. 

Finally, an important direction for future work is exploring embedded system co-design, 

where subsystem-level requirements are systematically decomposed into hardware and 

software components. This process could further enable automated test and validation 

procedures, ensuring seamless integration between software and hardware functionalities. 

Declaration on Generative AI 

During the preparation of this work, the authors used ChatGPT and Grammarly to: Grammar and 

spelling check, Paraphrase, and reword. After using these services, the authors reviewed and 

edited the content as needed and take full responsibility for the publication’s content .  
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