
Low-level Hardware Requirement Classification Using Large

Language Models: Challenges, Insights, and Future Directions

for Embedded Control Systems

Ekrem Bilgehan Uyar1,2∗, Ali Ergin Gürsoy2, Cemil Gökçe2, Tuğba Taşkaya Temizel1

1 Graduate School of Informatics, Middle East Technical University, Ankara 06800, Türkiye
2 Roketsan Inc., Ankara 06780, Türkiye

Abstract
Automated Requirements Engineering (RE) can streamline development processes, reduce errors, and
facilitate informed decision-making development efficiency, particularly for low-level hardware
requirements where modifications are costly. Classification is a fundamental step in automated RE and
is widely studied for software requirements. Yet, its applicability remains underexplored due to the
lack of structured datasets. This study adapts and evaluates software RE classification techniques for
hardware by extracting low-level requirements from open-source hardware design artifacts of
Embedded Control Systems. We evaluate two classification methods: fine-tuning a BERT-based model
and zero-shot prompting with a quantized LLM (Qwen2.5). While fine-tuning achieved high accuracy,
zero-shot classification with specific prompts outperformed it in overall performance. Our findings
suggest that RE automation for low-level hardware requirements may not require large, task-specific
datasets; however, classification performance can be further improved and can serve as a supporting
mechanism for advanced tasks.

Keywords
Requirements Classification, Large Language Models, Embedded Control Systems.1

1. Introduction

Embedded Control Systems (ECS) are widely employed in automotive, aerospace, and

consumer electronics. Their hybrid hardware-software nature and ubiquity make them an

intriguing subject for Requirements Engineering (RE) [1]. Managing hardware requirements is

particularly crucial, as they directly impact physical design and production—changes can be

both costly and time-sensitive [2,3].

Requirement classification is fundamental in RE automation and has been widely studied for

software requirements. However, low-level ECS hardware requirements often involve strict

quantitative constraints (e.g., minimum, and maximum values) rather than the abstract

definitions found in software. In addition, interdependence between requirements [4] adds

complexity, where altering one can necessitate additional changes or create new constraints.

Despite these differences, these techniques can be adapted and evaluated with suitable datasets.

Yet, their importance, no standardized dataset currently exists to support automation in RE

tasks for low-level ECS hardware requirements. To address this gap, we collaborated with

domain experts to create and annotate a dataset derived from open-source hardware design

materials, refining inferred constraints to align with established dataset-creation frameworks.

We then experimented with two baseline classification methods—fine-tuning a BERT-based

REFSQ 2025 Joint Proceedings of the Co-Located Events, NLP4RE, Apr 2025, Barcelona, Spain
∗ Corresponding author.

 lastname.secondname@metu.edu.tr (E.B. Uyar); secondname.lastname@roketsan.com.tr (A. E. Gürsoy);
name.lastname@roketsan.com.tr (C. Gökçe); ttemizel@metu.edu.tr (T. T. Temizel)

 0000-0001-8154-332X (E. B. Uyar); 0000-0001-7387-8621 (T. T. Temizel)

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:ttemizel@metu.edu.tr
https://orcid.org/0000-0001-8154-332X
https://orcid.org/0000-0001-7387-8621

model and applying a quantized large language model (Qwen2.5) with zero-shot prompting—

evaluating their performance using precision, recall, and F1-score. Our findings suggest that in

highly specialized domains, leveraging larger models with well-crafted prompts is a more

efficient alternative to constructing extensive datasets for fine-tuning. Furthermore, our analysis

of misclassified requirements underscores the critical role of context in classification accuracy.

These insights form a basis for downstream RE tasks and more advanced applications, including

the integration of Large Language Model guardrails for industrial deployment.

The remainder of this paper is organized as follows: Section 2 reviews the current state of

automated RE for natural language requirements. Section 3 describes our methodological

approach. Section 4 reports experimental results, followed by Section 5, which addresses the

study’s assumptions, limitations, and exclusions. Section 6 discusses our findings, and Section 7

summarizes key insights and explores future directions for applying RE to the ECS domain.

2. Related Work

Automated RE has been extensively explored using natural language processing (NLP) and

machine learning (ML) in the embedded systems domain. Applications include, but are not

limited to, requirements modeling [5], ontology-based specification [3], and named entity

recognition (NER) for requirement analysis [6]. Although the application of automated

requirements classification tasks in the context of embedded systems is not particularly popular,

it is widely studied in the field of software engineering [7]. Recently transfer-learning

approaches have shown their effectiveness both through approaches such as fine-tuning [8,9]

and through approaches such as prompting [10,11] for software requirements classification.

However, these methods rely on structured requirement datasets, limiting their direct

applicability to ECS and hardware requirements due to the numerical and physical constraints

that complicate direct adaptation.

In adjacent domains like chip design [12,13], LLMs have been employed for design validation

and documentation synthesis, demonstrating their potential in processing technical constraints.

Their applications extend across various industries, including aerospace [14] and automotive

[15], underscoring the versatility of LLMs in solving complex engineering problems in different

domains. However, such applications typically require domain-specific fine-tuning, a challenge

given the lack of open datasets for hardware RE. It is a significant barrier to their broader

application is the lack of open datasets tailored to domain-specific tasks. The performance of

LLMs is highly dependent on the quality and relevance of the datasets used for training and

evaluation [16].

Although zero-shot learning allows LLMs to operate in the absence of domain-specific

datasets, its limitations become evident as even advanced models can struggle in such settings

[17]. Therefore, the creation of high-quality datasets is indispensable. This study addresses these

gaps by adapting NLP-driven RE techniques to a dataset derived from hardware design sources,

exploring LLM-based classification within the constraints of ECS hardware requirements. To this

end, annotation development frameworks, such as the MATTER cycle [18], along with dataset

documentation frameworks [19-22] are essential for preparing robust datasets that support the

effective application of LLMs in new domains.

3. Research Design

3.1. Research Questions & Scope

This study investigates the feasibility of adapting RE classification techniques widely used in

software engineering to ECS hardware requirements. To structure our investigation, we define

the following research questions:

• RQ1: What are the challenges in creating a representative annotated requirements

corpus from hardware design sources to enable automated classification?

• RQ2: How effective are fine-tuning and zero-shot approaches with large language models

(LLMs) at accurately classifying ECS hardware requirements?

RQ1 addresses the methodological challenges by investigating how to extract, annotate, and

validate hardware requirements in a structured manner. RQ2 evaluates the ability of existing

classification techniques, adapted from software RE, to perform effectively in the hardware

domain.

3.2. Dataset Creation Process & Its Practical Implications

In our case, hardware requirements are embedded within circuit diagrams, technical

documentation, and component datasheets, unlike common software RE datasets compiled from

textual specifications. Therefore, we developed a hardware requirements dataset by reverse-

engineering design artifacts from open-source ECS projects. This approach introduced several

challenges addressing RQ1:

• Implicit vs. Explicit Requirements: Unlike explicitly defined requirements, low-level ECS

hardware requirements need to be inferred from design constraints and physical

elements.

• Interdependencies: Hardware requirements can exhibit a higher degree of

interconnectivity and interdependency; a single modification in one requirement often

cascades into multiple downstream constraints.

• Quantitative Features: Unlike software requirements, which frequently describe system

functionalities, hardware requirements predominantly involve numerical constraints

(e.g., voltage ratings, timing requirements, temperature tolerances).

• Size: To ensure effective model training, the dataset should be sufficiently large, ideally

making it comparable to established RE datasets such as PROMISE [23].

To overcome these challenges, we adopted an iterative annotation framework with DEs. We

systematically managed both the requirement writing and annotation processes using

guidelines developed according to the MATTER cycle [18]. This annotation development cycle,

recognized within the RE community [24,25], employs an iterative and incremental approach to

ensure accuracy and reliability throughout the dataset creation process. The details of the

process are presented in the following subsections.

3.2.1. Domain Expert Selection

The selection criteria for the contributing DEs were critical to the creation and annotation of the

ECS requirements corpus. As emphasized by [26], experts must demonstrate significant skills,

knowledge, and experience. Addressing these, three electrical and electronics engineers with 10

to 15 years of experience in the R&D departments of ECS/embedded systems, contributed

voluntarily to this study. Bayerl and Paul [27] recommend that annotators possess comparable

domain knowledge and receive appropriate training. Accordingly, comprehensive training

sessions on RE and NLP tasks were provided to the DEs.

3.2.2. Classification Problem

The DEs identified five basic functionality categories by analyzing the functional blocks of the

ECS, which form the basis of the annotation problem (Table 1). Our labeling structure was

designed to imitate the general architecture of feedback control systems. While alternative

taxonomy approaches, such as categorization based on design expertise (e.g., analog, digital, or

power circuit design), could have been applied, we determined that a more pragmatic,

exploratory classification was appropriate since no clear guideline exists in the ECS domain to

support it yet. Finally, we aimed to make the categories as inclusive as possible while ensuring

broad applicability across different ECS application domains.

Table 1

The five functional categories

Label Category Definition
F Feedback Any requirement defining a specification for sensing the controlled physical entity.

Typically, they may refer to current delivered to the controlled load, position information
according to the controlled motion of an actuator, pressure, humidity, or temperature.

C Controller Any requirement defining a specification for the “smart” functionalities regarding the
processing cores of the system. Typically, any requirement consisting of any digital or
analog control specification including processing or memory capabilities relates to this
category.

I Interface Any requirement defining a specification for the connections of the system and the
external world, as well as physical user interfaces such as buttons, switches, status LEDs,
screens, etc.

P Power Any requirement defining a specification for managing the power delivered to or from the
system. These include conversion, limits, fluctuation, EMI/C specifications, as well as
power lines of the system peripherals such as sensors.

D Driver Any requirement defining a specification for driving the controlled load. Typically, the load
may refer to electric motors, heaters, fans, pumps, or any type of actuator.

3.2.3. OSHW ECS Project Selection

[18] emphasize that to prevent bias in model training, over-representation of features rarely

encountered in real-world scenarios must be avoided. To represent a product inventory

emulating an industrial setting that can be used for AI training, we selected source projects based

on the following criteria: (1) permissive licensing, (2) representation of real-world ECS

applications, (3) diversity in products and functional blocks to enhance dataset

representativeness, and (4) availability of structured design documentation.

Eight open-source ECS projects were selected from the project list maintained by the Open-

Source Hardware Association or published in the open-source hardware journal HardwareX.

Each selected project underwent review and consensus by the DEs to ensure alignment with the

mentioned four criteria. The selected projects represent a diverse range of physical entities,

including pressure, weight, and velocity, and involve control instruments such as pumps and

fans. Table 2 presents the complete list of projects along with their IDs and functional domains.

The functional domain descriptions here aim to provide insight into system complexity,

component dependencies, and diversity across projects. For example, domains like robotics and

power electronics feature tightly integrated components, while food processing and agricultural

automation rely on more modular architectures. This also reflects the variety and number of

components, as different domains inherently require distinct sets of sensors, actuators, and

control mechanisms, ensuring a representative dataset of diverse functional blocks.

Table 2

List of selected open-source ECS projects

Project
ID

Source Functional Domain

P001 [28] Generic Embedded Control Systems (Flexible IoT control board for various applications)
P002 [29] Robotics (Hydraulic quadruped robot control system)
P003 [30] Additive Manufacturing (Multifunctional extruder with sensing and monitoring capabilities)
P004 [31] Food Processing & Preservation (Automated dry-aging system for beef)
P005 [32] Actuator Control (High-current driver for magnetic actuators)

P006 [33] Agricultural Automation (Automated sensing and control for irrigation scheduling)
P007 [34] Environmental Monitoring (Autonomous ocean profiler for hazardous area measurements)
P008 [35] Power Electronics (Modular control platform for voltage source inverter)

3.2.4. Requirement Extraction and Annotation

Our reverse-engineering approach for extracting and annotating requirements from hardware

projects has two key aspects: (1) Expert-Guided Requirement Identification, where DEs defined

extraction guidelines, manually extracted them from design documents and categorized

requirements; (2) Iterative Annotation and Refinement, where DEs refined guidelines,

requirements, and dataset through consensus-based adjudication. For example, DE review

meetings identified ambiguities, especially in multi-PCB projects and connector requirements.

The guidelines were then revised to focus on electronic circuit structures while excluding

mechanical and environmental constraints, as they had minimal impact on functional

categorization.

The process resulted in 366 requirements from eight projects over 191 DE hours spanning

184 days. Resulting annotation consistency was assessed using recommended [36,37] Inter-

Annotator Agreement (IAA) metrics: Fleiss’ Kappa (0.76) and Cohen’s Kappa (0.66–0.74),

indicating strong agreement. Based on these scores labeling repetition was unnecessary.

However, the adjudication process aimed to establish a gold standard by achieving consensus

among annotators, ensuring high data quality through error correction and consistency checks.

During adjudication meetings, non-consensus requirements were reviewed through

discussions where DEs explained their classification rationale. If disagreements stemmed from

requirement quality issues, such as violations of agreed-upon guidelines or inconsistencies with

the design artifacts, necessary corrections were made to align them with the established criteria.

Requirements that failed to meet technical sufficiency standards were either revised or removed,

ensuring coherence and reliability in the final dataset. As a result, 28 out of 366 requirements

were removed due to insufficient technical details, while 24 were modified to resolve

ambiguities. These refinements addressed violations of predefined guidelines but did not

introduce a significant shift in distribution or category representation.

The final gold standard revealed category imbalance, reflecting real-world distributions.

Project-level requirement distributions varied based on complexity, and differences among the

three DEs’ annotations were influenced by their distinct writing styles. These variations are

summarized in Table 5, while the finalized dataset's statistical distribution is presented in Table

4.

Table 4

Statistical Distributions of the Adjudicated ECS Dataset.

 Count
Percentage

(%)

Label Distribution

I 99 29.29
P 77 22.78
F 77 22.78
D 55 16.27
C 30 8.88

Source HW Project
Distribution

P006 59 17.51
P005 48 14.24
P002 47 13.95
P007 44 13.06
P001 37 10.98
P003 36 10.68
P004 35 10.39
P008 31 9.20

DE Distribution DE003 125 36.98

DE002 110 32.54
DE001 103 30.47

Table 5

DE writing styles across four original “Feedback” requirements targeting the same functionality.

DE ID Requirement
DE001 The system shall be capable of measuring relative humidity and temperature with

accuracy 2.0% and 0.5C respectively that communicate over SPI with the sensor.
DE002 The system shall measure relative humidity (RH) with an accuracy level of ±2.0%

and temperature with an accuracy level of ±0.5% via sensor with digital output.
DE003 The system shall read relative humidity sensor with accuracy ± 2.0%
DE003 The system shall read a temperature sensor with accuracy ± 0.5 °C

3.3. Classification Models & Experimental Setup

In this study, we applied and compared two baseline approaches: fine-tuning a BERT-based

classifier, NoRBERT, and utilizing a quantized large language model, Qwen2.5, with zero-shot

prompting. NoRBERT was selected for its strong performance in software requirement

classification compared to contemporary methods, while Qwen2.5 was chosen for its

competitive benchmark results among open-source large language models.

3.3.1. Baseline Model: A Fine-tuned Approach with BERT

We utilized NoRBERT [8] as a baseline model for classifying ECS requirements, leveraging BERT-

based transfer learning, which has reported F1 scores of up to 94% in multi-class software

requirement classification performance. However, due to differences in classification schemes

and domain-specific terminology, the pre-trained NoRBERT model could not be directly applied

in this study. Instead, we adopted NoRBERT's methodology and tailored it for classifying ECS

requirements in our domain-specific context.

3.3.2. Zero-shot ECS Requirement Classification with LLMs

 Given the limited availability of datasets, prompt-based classification with LLMs is a viable

alternative to dataset-heavy fine-tuning methods. Our zero-shot prompting approach consisted

of two main steps: Prompt Design and Model Selection/Setting.

In Prompt Design, we adapted the strategy and methodology from [10], who applied similar

techniques in the RE domain to develop prompts that leverage the pre-trained capabilities of

LLMs for multiclass requirement classification. Their study, which utilized the GPT-3.5 Turbo

API for RE tasks, proposed an evaluation framework for selecting prompt patterns. Based on

their recommendations, we considered four prompt patterns, which were shown to be effective

for the binary classification of software requirements. Table 6 demonstrates how we adapted

these patterns to the ECS low-level requirements classification problem.

Table 6

Designed Zero Shot Prompt Patterns for ECS Requirements Classification

Pattern (ID) Prompt

Cognitive
Verifier (1)

Classify the given hardware requirement into one of the five functional labels. These labels are
feedback (labelled as F), driver (labelled as D), interface (labelled as I), power (labelled as P) and
controller (labelled as C). The label definitions are as follows: (…) Ask me questions if needed to
break the given task into smaller subtasks. All the outputs to the smaller subtasks must be
combined before you generate the final output. The requirement: (…)

Context
Manager (2)

Classify the given hardware requirement into one of the five functional labels. These labels are
feedback (labelled as F), driver (labelled as D), interface (labelled as I), power (labelled as P) and
controller (labelled as C). The label definitions are as follows: (…) When you provide an answer,
please explain the reasoning and assumptions behind your response. If possible, address any

potential ambiguities or limitations in your answer, to provide a more complete and accurate
response. The requirement: (…)

Persona (3)

Act as a requirements engineering domain expert in embedded control systems and classify the
given hardware requirement into one of the five functional labels. These labels are feedback
(labelled as F), driver (labelled as D), interface (labelled as I), power (labelled as P) and controller
(labelled as C). The label definitions are as follows: (…) The requirement: (…)

Question
Refinement
(4)

Classify the given hardware requirement into one of the five functional labels. These labels are
feedback (labelled as F), driver (labelled as D), interface (labelled as I), power (labelled as P) and
controller (labelled as C). The label definitions are as follows: (…) Ask me questions if needed to
break the given task into smaller subtasks. All the outputs to the smaller subtasks must be
combined before you generate the final output. If needed, suggest a better version of the question
to use that incorporates information specific to this task and ask me if I would like to use your
question instead. The requirement: (…)

We considered the model selection criteria based on potential needs that may arise in

industrial use, as ECS design teams typically prioritize solutions that align with their operational

and technical constraints. These include: (1) non-commercial solutions to address data privacy

and control concerns, (2) scalable solutions that do not require significant local computation

investments, and (3) less restrictive licenses for broader adaptability. Based on these criteria,

we selected a quantized variant of the instruction-tuned QWEN-2.5 family model. These models

can be locally hosted on a single machine using popular open-source libraries, such as llama.cpp

and GPT4All [15].

3.3.3. Experimental Setup

Various methods exist for splitting datasets into training, validation, and test sets, such as

random or stratified sampling. However, in this study, requirements from two entire projects

were held out as the test set to prevent data leakage and ensure evaluation on a distinct dataset.

The DEs selected these projects by consensus, choosing one that closely resembled the others in

terms of diversity and complexity and another that was least similar. This strategy enabled a

more comprehensive assessment of the model’s generalizability. The test set was strictly

excluded from all stages of the study, including training, fine-tuning, and model selection

experiments.

NoRBERT baseline model was fine-tuned using the remaining six projects, with

hyperparameters optimized via Grid Search. Training and inference were conducted on Google

Colab using a Tesla T4 GPU. For Qwen2.5-72B-Instruct, the llama.cpp library was used on a local

machine with 24 CPU cores, 256 GB RAM, and 8 GB GPU RAM. The key non-default parameters

used included a context size of 32,000, 24 threads, an RNG seed of 33, a temperature set to 0, and

a maximum token limit of 500. Each requirement was processed individually to prevent cross-

influence, and results were logged separately. To ensure inference independence, the model was

reloaded for each requirement. For handling anomalies in prompting results, we treated the

following cases as misclassifications: when the model ignored requirement details, generated

outputs outside the five predefined categories or returned null.

4. Results

This section presents the results of the classification of ECS low-level hardware requirements,

addressing RQ2 through the evaluation of two models: fine-tuned BERT and zero-shot Qwen-2.5,

applied with four distinct prompt patterns.

Table 7 summarizes the performance of the four prompt patterns: (1) Cognitive Verifier, (2)

Context Manager, (3) Persona, and (4) Question Refinement, evaluated using Qwen-2.5 (N)

and fine-tuned BERT (T-0) on a hold-out test set. The results are presented for each category,

with metrics for precision (P), recall (R), and F1 score (F1) provided for each label.

Since the dataset includes labels with varying numbers of samples (support values), the last

row of the table reports the average performance across all labels, providing a holistic view of

each model's classification capabilities.

Table 7

The experiment results for the hold-out test set.

 Classifier

Category
N-1 N-2 N-3 N-4 T-0

Feedback
(Support: 24)

P 0.89 0.89 0.91 0.90 0.82
R 0.71 0.71 0.83 0.75 0.75

F1 0.79 0.79 0.87 0.82 0.78

Interface
(Support: 32)

P 0.78 0.77 0.83 0.81 0.81
R 0.91 0.94 0.94 0.94 0.94

F1 0.84 0.85 0.88 0.87 0.87

Controller
(Support: 7)

P 0.60 0.75 0.86 0.55 1.00
R 0.86 0.86 0.86 0.86 0.86

F1 0.71 0.80 0.86 0.67 0.92

Driver
(Support: 13)

P 0.92 0.92 1.00 1.00 1.00
R 0.85 0.85 0.85 0.69 0.62

F1 0.88 0.88 0.92 0.82 0.76

Power
(Support: 16)

P 1.00 1.00 1.00 1.00 0.74
R 0.88 0.88 1.00 0.94 0.88

F1 0.93 0.93 1.00 0.97 0.80
A 0.84 0.85 0.90 0.85 0.83

w.F 0.84 0.85 0.90 0.85 0.82

The results indicate that the Qwen-2.5 model with the Persona prompt pattern (N-3)

generally achieves the most balanced performance among the evaluated configurations. Analysis

of the confusion matrices reveals that N-3 reduces certain types of misclassifications compared

to the fine-tuned BERT model (T-0). For instance, N-3 does not misclassify "Power" as

"Feedback," whereas T-0 records two such errors. Additionally, N-3 demonstrates improved

accuracy in distinguishing between "Driver" and "Power." However, confusion between

"Interface" and "Feedback" persists across both models, indicating a common challenge in these

categories.

For fine-tuning models, a separate hold-out set and training set are required, whereas zero-

shot settings eliminate this need. Therefore, we also evaluated the Qwen-2.5 model using the full

dataset, comprising all 338 requirements, under the same configuration. The results, as

summarized in Table 8, demonstrate an overall improvement in performance compared to the

hold-out set, with category-level consistency largely maintained. While the performance of N-3

declines slightly as other models improve, it remains the best-performing configuration overall.

Table 8

The experiment results for the complete dataset.

 Classifier

Label
N-1 N-2 N-3 N-4

Feedback
(Support: 77)

P 0.85 0.92 0.92 0.88
R 0.78 0.77 0.84 0.82

F1 0.81 0.84 0.88 0.85

Interface
(Support: 99)

P 0.85 0.80 0.84 0.86
R 0.88 0.95 0.94 0.87

F1 0.87 0.87 0.89 0.86

Controller
(Support: 30)

P 0.68 0.79 0.77 0.63
R 0.90 0.87 0.77 0.90

F1 0.77 0.83 0.77 0.74

Driver
(Support: 55)

P 0.94 0.92 0.94 0.98
R 0.87 0.87 0.89 0.85

F1 0.91 0.90 0.92 0.91
Power P 0.92 0.93 0.93 0.91

(Support: 77) R 0.87 0.86 0.88 0.82
F1 0.89 0.89 0.91 0.86

A 0.86 0.87 0.88 0.85
w.F 0.86 0.87 0.88 0.86

5. Threats to Validity

Our dataset is based on open-source ECS projects, which may not fully represent industrial

requirements. Since contributions were voluntary, only three non-native speakers (but

proficient) DEs participated, potentially limiting annotation consistency and introducing

subjective variations. Similarly, we manually selected the test set by consensus to evaluate

generalization on more challenging projects, though we acknowledge that this choice may

introduce bias. While the DEs were highly skilled in technical domains, they lacked prior

expertise in computational linguistics or annotation processes. Additionally, differences

between LLM and library versions may significantly impact the obtained results. Contextual

ambiguity also remains a challenge, as hardware requirements were classified without explicit

system-wide references. To mitigate these issues, training sessions were held for the DEs,

annotation guidelines were refined to minimize ambiguity, the adjudication process was applied

at each iteration, and misclassifications were thoroughly analyzed to assess model errors.

While the dataset and code remain unpublished due to ongoing PhD research, we provide a

detailed methodology and analytical framework to ensure transparency and support

reproducibility within the constraints of our current research phase.

6. Discussion

This study explored how software RE classification techniques can be adapted for low-level ECS

hardware requirements, addressing dataset construction challenges (RQ1) and classification

performance (RQ2).

Extracting low-level hardware requirements posed challenges related to the need for

inferring them from circuit constraints and component specifications rather than explicitly

stated as a formal textual extraction. We experienced firsthand the labor-intensive process, a

difficulty widely acknowledged in the literature [16]. Our requirements were inherently implicit,

derived from design constraints and physical limitations rather than explicitly stated. However,

the framework outlined in [18] provided a structured approach to managing [19-22] this

process. Despite adhering to established guidelines, the domain’s complexity led domain experts

to perceive strong interdependencies and a critical need for contextual understanding when

evaluating individual requirements. Furthermore, constructing a dataset comparable in size to

established benchmarks like PROMISE [23] demanded considerable effort, and in our case, we

could only generate a dataset approximately half its size.

Our findings on the classification performance indicate that the fine-tuning approach

performed well on structured hardware requirements, but zero-shot classification with prompt

engineering outperformed the fine-tuned approach in certain cases, reducing reliance on dataset

curation. Aligning with the most related work in software RE [8-11], fine-tuning remains

effective but demands high-quality datasets, technical expertise, and computational resources.

However, contrary to [17], we observed that the zero-shot approach yielded better results for

our case, considering the domain and dataset size. However, unlike software requirements,

hardware constraints introduce strong interdependencies that make classification sensitive to

contextual ambiguity. Misclassified cases, particularly within the Interface category, often

stemmed from pre-consensus disagreements among domain experts. A review of adjudication

meeting notes revealed that ambiguous cases frequently involved multi-board projects, where

internal and external interfaces were not always distinguishable without context. This suggests

that for low-level hardware requirements, context is crucial for classification accuracy. Providing

the full set of requirements or key system attributes could significantly improve performance.

This ambiguity underscores the need for new approaches to ECS requirement handling,

advocating for hybrid methods and prompt engineering in future RE research.

These results suggest that classification alone is insufficient for ECS low-level hardware RE in

our case. Instead, functional labels can serve as a supporting mechanism downstream and

advanced tasks.

7. Conclusion and Future Work

This study assessed the feasibility of applying software RE classification techniques to ECS

hardware requirements. Dataset construction (RQ1) highlighted challenges in extracting

requirements from design artifacts and developing a structured classification protocol,

demanding domain expertise and iterative refinement. Model evaluation (RQ2) found that well-

crafted zero-shot LLM prompts can outperform fine-tuned BERT models, eliminating the need

for extensive dataset curation and fine-tuning. The findings highlight inherent ambiguity due to

the interdependencies in low-level hardware requirements, particularly when analyzed

individually versus holistically.

While classification currently serves as an auxiliary task in our case, it can enable systematic

RE methodologies in ECS design for downstream tasks like analysis, verification, validation,

testing, etc. Future work will explore dataset expansion & its open-access release as well as

confidence-aware systems integrating human-in-the-loop approaches to enhance classification

reliability. Additionally, understanding prompt efficiency can help reduce classification errors

and improve requirement quality.

Finally, an important direction for future work is exploring embedded system co-design,

where subsystem-level requirements are systematically decomposed into hardware and

software components. This process could further enable automated test and validation

procedures, ensuring seamless integration between software and hardware functionalities.

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT and Grammarly to: Grammar and

spelling check, Paraphrase, and reword. After using these services, the authors reviewed and

edited the content as needed and take full responsibility for the publication’s content .

References

[1] Fariha, A., Alwidian, S., & Azim, A. (2023). Towards Requirements Specification

Collaboration Forum for Embedded Software Systems. 2023 ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C),

312–317. https://doi.org/10.1109/MODELS-C59198.2023.00061

[2] Aceituna, D. (2013). Survey of Concerns in Embedded Systems Requirements Engineering.

SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 7(1), 1–13.

https://doi.org/10.4271/2013-01-2403

[3] Sousa, A., Couto, T., Agra, C., & Alencar, F. (2016). Use of Ontologies in Embedded Systems:

A Systematic Mapping. 2016 10th International Conference on the Quality of Information and

Communications Technology (QUATIC), 1–8. https://doi.org/10.1109/QUATIC.2016.011

[4] Aalund, R., & Philip Paglioni, V. (2025). Enhancing Reliability in Embedded Systems

Hardware: A Literature Survey. IEEE Access, 13, 17285–17302. IEEE Access.

https://doi.org/10.1109/ACCESS.2025.3534138

https://doi.org/10.1109/MODELS-C59198.2023.00061
https://doi.org/10.4271/2013-01-2403
https://doi.org/10.1109/QUATIC.2016.011
https://doi.org/10.1109/ACCESS.2025.3534138

[5] Ruan, K., Chen, X., & Jin, Z. (2023). Requirements Modeling Aided by ChatGPT: An Experience

in Embedded Systems. 2023 IEEE 31st International Requirements Engineering Conference

Workshops (REW), 170–177. https://ieeexplore.ieee.org/abstract/document/10260857

[6] Chow, M. Y. (2023). Analysis of Embedded System’s Functional Requirement using BERT-

based Name Entity Recognition for Extracting IO Entities. Journal of Information Processing,

31(0), 143–153. https://doi.org/10.2197/ipsjjip.31.143

[7] Lopez-Hernandez, D. A., Octavio Ocharan-Hernandez, J., Mezura-Montes, E., & Sanchez-

Garcia, A. J. (2021). Automatic Classification of Software Requirements using Artificial

Neural Networks: A Systematic Literature Review. 2021 9th International Conference in

Software Engineering Research and Innovation (CONISOFT), 152–160.

https://doi.org/10.1109/CONISOFT52520.2021.00030

[8] Hey, T., Keim, J., Koziolek, A., & Tichy, W. F. (2020). NoRBERT: Transfer Learning for

Requirements Classification. 2020 IEEE 28th International Requirements Engineering

Conference (RE), 169–179. https://doi.org/10.1109/RE48521.2020.00028

[9] Kici, D., Malik, G., Cevik, M., Parikh, D., & Başar, A. (2021). A BERT-based transfer learning

approach to text classification on software requirements specifications. Proceedings of the

Canadian Conference on Artificial Intelligence.

https://doi.org/10.21428/594757db.a4880a62

[10] Ronanki, K., Cabrero-Daniel, B., Horkoff, J., & Berger, C. (2023). Requirements Engineering

using Generative AI: Prompts and Prompting Patterns (No. arXiv:2311.03832). arXiv.

https://doi.org/10.48550/arXiv.2311.03832

[11] Arvidsson, S., & Axell, J. (2023). Prompt engineering guidelines for LLMs in Requirements

Engineering. https://gupea.ub.gu.se/handle/2077/77967

[12] Meng, X., Srivastava, A., Arunachalam, A., Ray, A., Silva, P. H., Psiakis, R., Makris, Y., & Basu, K.

(2023). Unlocking Hardware Security Assurance: The Potential of LLMs (No.

arXiv:2308.11042). arXiv. https://doi.org/10.48550/arXiv.2308.11042

[13] Liu, M., Ene, T., Kirby, R., Cheng, C., Pinckney, N., Liang, R., Alben, J., Anand, H., Banerjee, S.,

Bayraktaroglu, I., Bhaskaran, B., Catanzaro, B., Chaudhuri, A., Clay, S., Dally, B., Dang, L.,

Deshpande, P., Dhodhi, S., Halepete, S., … Ren, H. (2023). ChipNeMo: Domain-Adapted LLMs

for Chip Design (No. arXiv:2311.00176). arXiv. https://doi.org/10.48550/arXiv.2311.00176

[14] Tikayat Ray, A., Cole, B. F., Pinon Fischer, O. J., White, R. T., & Mavris, D. N. (2023). aeroBERT-

Classifier: Classification of Aerospace Requirements Using BERT. Aerospace, 10(3), 279.

https://doi.org/10.3390/aerospace10030279

[15] Uygun, Y., & Momodu, V. (2024). Local large language models to simplify requirement

engineering documents in the automotive industry. Production & Manufacturing Research,

12(1), 2375296.

[16] Sambasivan, N., Kapania, S., Highfill, H., Akrong, D., Paritosh, P., & Aroyo, L. M. (2021, May).

“Everyone wants to do the model work, not the data work”: Data Cascades in High-Stakes

AI. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp.

1-15).

[17] Murthy, R., Kumar, P., Venkateswaran, P., & Contractor, D. (2024). Evaluating the

Instruction-following Abilities of Language Models using Knowledge Tasks. arXiv preprint

arXiv:2410.12972.

[18] Pustejovsky, J., & Stubbs, A. (2012). Natural Language Annotation for Machine Learning: A

guide to corpus-building for applications. " O'Reilly Media, Inc.".

[19] Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Iii, H. D., & Crawford, K.

(2021). Datasheets for datasets. Communications of the ACM, 64(12), 86-92.

[20] Holland, S., Hosny, A., Newman, S., Joseph, J., & Chmielinski, K. (2020). The dataset nutrition

label. Data Protection and Privacy, 12(12), 1.

https://ieeexplore.ieee.org/abstract/document/10260857/
https://doi.org/10.2197/ipsjjip.31.143
https://doi.org/10.1109/CONISOFT52520.2021.00030
https://doi.org/10.1109/RE48521.2020.00028
https://doi.org/10.21428/594757db.a4880a62
https://doi.org/10.48550/arXiv.2311.03832
https://gupea.ub.gu.se/handle/2077/77967
https://doi.org/10.48550/arXiv.2308.11042
https://doi.org/10.48550/arXiv.2311.00176
https://doi.org/10.3390/aerospace10030279

[21] Bender, E. M., & Friedman, B. (2018). Data statements for natural language processing:

Toward mitigating system bias and enabling better science. Transactions of the Association

for Computational Linguistics, 6, 587-604.

[22] Hutchinson, B., Smart, A., Hanna, A., Denton, E., Greer, C., Kjartansson, O., ... & Mitchell, M.

(2021, March). Towards accountability for machine learning datasets: Practices from

software engineering and infrastructure. In Proceedings of the 2021 ACM Conference on

Fairness, Accountability, and Transparency (pp. 560-575).

[23] Cleland-Huang, J., Mazrouee, S., Liguo, H & Port, D. (2007). nfr [Data set]. Zenodo. Available:

http://doi.org/10.5281/zenodo.268542

[24] Fischbach, J., Frattini, J., Spaans, A., Kummeth, M., Vogelsang, A., Mendez, D., &

Unterkalmsteiner, M. (2021). Automatic detection of causality in requirement artifacts: the

cira approach. In Requirements Engineering: Foundation for Software Quality: 27th

International Working Conference, REFSQ 2021, Essen, Germany, April 12–15, 2021,

Proceedings 27 (pp. 19-36). Springer International Publishing.

[25] Noh, Y., Kim, K., Lee, M., Heo, C., Jeong, Y., Jeong, Y., ... & Choi, K. S. (2020, October). Enhancing

quality of corpus annotation: Construction of the multi-layer corpus annotation and

simplified validation of the corpus annotation. In Proceedings of the 34th Pacific Asia

Conference on Language, Information and Computation (pp. 216-224).

[26] Hopkins, P., & Unger, M. (2017). What is a’subject-matter expert’? Journal of Pipeline

Engineering, 16(4).

[27] Bayerl, P. S., & Paul, K. I. (2011). What determines inter-coder agreement in manual

annotations? A meta-analytic investigation. Computational Linguistics, 37(4), 699–725.

[28] Anthilla/AnthC. (2024). [HTML]. Anthilla. https://github.com/Anthilla/AnthC (Original

work published 2021)

[29] Fang, L., Zhang, J., Zong, H., Wang, X., Zhang, K., Shen, J., & Lu, Z. (2023). Open-source lower

controller for twelve degrees of freedom hydraulic quadruped robot with distributed

control scheme. HardwareX, 13, e00393.

[30] Klar, V., Pearce, J. M., Kärki, P., & Kuosmanen, P. (2019). Ystruder: Open source multifunction

extruder with sensing and monitoring capabilities. HardwareX, 6, e00080.

[31] Lau, S. K., Ribeiro, F. A., Subbiah, J., & Calkins, C. R. (2019). Agenator: An open source

computer-controlled dry aging system for beef. HardwareX, 6, e00086.

[32] Bujnowicz, Ł., & Sarewicz, M. (2022). Multichannel pulse high-current driver of magnetic

actuator. HardwareX, 11, e00286.

[33] Abbas, N. S., Salim, M. S., & Sabri, N. (2024). ASCD: Automatic sensing and control device for

crop irrigation scheduling. HardwareX, 18, e00523.

[34] Poulsen, E., Eggertsen, M., Jepsen, E. H., Melvad, C., & Rysgaard, S. (2022). Lightweight drone-

deployed autonomous ocean profiler for repeated measurements in hazardous areas–

Example from glacier fronts in NE Greenland. HardwareX, 11, e00313.

[35] Lezcano, H., Rodas, J., Pacher, J., Ayala, M., & Romero, C. (2023). Design and validation of a

modular control platform for a voltage source inverter. HardwareX, 13, e00390.

[36] Klie, J. C., Castilho, R. E. D., & Gurevych, I. (2024). Analyzing dataset annotation quality

management in the wild. Computational Linguistics, 50(3), 817-866.

[37] Kim, M., Qiu, X., & Wang, Y. (Arthur). (2024). Interrater agreement in genre analysis: A

methodological review and a comparison of three measures. Research Methods in Applied

Linguistics, 3(1), 100097. https://doi.org/10.1016/j.rmal.2024.100097

http://doi.org/10.5281/zenodo.268542
https://github.com/Anthilla/AnthC

