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Abstract 

This paper proposes a systematic benchmarking method called BenchMetrics to analyze and compare the robustness of 

binary-classification performance metrics based on the confusion matrix for a crisp classifier. BenchMetrics, introducing 

new concepts such as meta-metrics (metrics about metrics) and metric-space, has been tested on fifteen well-known metrics 

including Balanced Accuracy, Normalized Mutual Information, Cohen’s Kappa, and Matthews Correlation Coefficient 

(MCC), along with two recently proposed metrics, Optimized Precision and Index of Balanced Accuracy in the literature. 

The method formally presents a pseudo universal metric-space where all the permutations of confusion matrix elements 

yielding the same sample size are calculated. It evaluates the metrics and metric-spaces in a two-staged benchmark based 

on our proposed eighteen new criteria and finally ranks the metrics by aggregating the criteria results. The mathematical 

evaluation stage analyzes metrics’ equations, specific confusion matrix variations, and corresponding metric-spaces. The 

second stage, including seven novel meta-metrics, evaluates the robustness aspects of metric-spaces. We interpreted each 

benchmarking result and comparatively assessed the effectiveness of BenchMetrics with the limited comparison studies in 

the literature. The results of BenchMetrics have demonstrated that widely used metrics have significant robustness issues, 

and MCC is the most robust and recommended metric for binary-classification performance evaluation. 
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1  Introduction 

Binary-classification performance metrics are widely used instruments for numerous classification application areas to 

evaluate and report the performance of classifiers. The choice of a metric is often dependent on the classification problem 

domain and the previous practices in the related literature. In recent years, however, the limitations of the commonly used 

metrics such as accuracy and F1 have been noted. For instance, accuracy (ACC) was reported not to be robust in class 

imbalanced problems because it produces an over-optimistic prediction performance towards the majority class [1, 2]. 

Likewise, F1, despite its reputation in many fields such as information retrieval, has been criticized as invariant to class 

swapping and independent from the number of true negative samples [3, 4]. Researchers proposed metrics to improve the 

existing ones such as accuracy, G, and F1 (e.g., Optimized Precision (OACC) to improve Accuracy [5] or IBAɑ(G) to 

improve G [6]). However, they often had difficulties demonstrating the superiority of the proposed metrics systematically 

over the existing ones. The evaluation of performance metrics has been carried out in the literature by (1) manual 

examination of known machine-learning (ML) algorithms trained and tested on balanced and imbalanced synthetic or real-

world datasets and comparing the metric outputs in tabular form or on the plots in graphical form, (2) examining each 

metric’s behavior when the confusion matrix elements are exchanged to see whether they are mathematically correct, 
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(3) introducing comparison criteria or (4) proposing evaluation requirements to see the differences among the metric 

outputs.  

• In the first approach, the studies in the literature used simulated baseline classifiers on synthetic datasets [7] or 

real-world datasets [8, 9] with different class ratios. Then, the results expressed in terms of various metrics or 

their correlations were examined individually [10]. These comparisons were generally carried out by visual 

inspection of related graphs or manual interpretation, which are limited to show marginal differences between the 

metrics [11, 12]. Several factors provided as is, including the ML model and parameter selection, feature selection, 

and noise in the datasets, could not be taken into account in those evaluations. Such approaches covered a limited 

metric-space.  

• In the second approach, the variations of metrics upon simply changing the confusion matrix elements are 

examined. Sokolova and Lapalme [13] examined invariance behaviors such as changing one element value while 

the remaining ones are the same and swapping TP with TN and FP with FN. 

• In the third approach, the studies proposed criteria or constraints to evaluate metrics. Huang and Ling [14] suggest 

consistency and discriminancy degrees for comparing two performance metrics tested with only ACC and Area-

Under-ROC-Curve (AUCROC, ROC: receiver operating characteristic) metrics in balanced/imbalanced dataset 

examples. Consistency refers to the degree of agreement between two metrics where the corresponding pair of 

metric output values are in the same order of precedence (i.e. the first values of both metrics are higher than the 

second values). Discriminancy indicates the degree of the cases in which a metric yields a different pair of output 

values where the other returns the same value. 

• For the fourth approach, Forbes [15] poses six coarse constraints for measures of agreements, such as being 

statistically principled, readily interpretable, and generalizable to more than one class. From a classification 

perspective, Pereira et al. [16] address uninformed decisions about using a metric for multi-label classifications 

in the literature, analyze the correlations among metric pairs, and suggest alternative sets of metrics to use. Straube 

and Krell [17] propose the following criteria for choosing a metric: i) performance-oriented (not data-oriented), 

ii) intuitive (interpretable), and iii) comparable (accepted in the literature). Some essential criteria are also 

suggested for assessing performance metrics. For example, Hossin and Sulaiman [18] discuss factors for binary 

and multi-class classification performance metrics, such as multi-class compatibility, less 

complexity/computational cost, distinctive and discriminable metric outputs, informativeness (discrimination of 

equivalent or different cases), and minority class sensitivity. 

However, these approaches exhibit several drawbacks: (i) they cover only limited aspects of the metrics, (ii) the results 

based on a small number of synthetic or real-world datasets cannot be generalized, (iii) partial coverage of the error surface, 

(iv) they do not produce a scaled mathematical score for facilitating objective comparison, and (v) visual examination of 

graphics or manual interpretation of tabular values requires expertise and provides little insights. Moreover, the evaluation 

scope was limited.  Tharwat [19] reviews performance metrics where CK is not included. Likewise, Brown finds MCC (as 

the best) and F1 (conflicting with our assessments) more realistic comparing with only TPR, TNR, PPV, and ACC by 

examining the TPR versus TNR in balanced and imbalanced datasets [3]. Chicco and Jurman [20] claim that MCC is more 

informative than ACC and F1 by examining the classifiers yielding random and largest class binary-labels and a set of 

class-imbalance cases.  In brief, two key problems with much of the literature on reviewing performance metrics are 

observed: 

• the assessments are limited, as elaborated in Section 3 and specifically reviewed in Table 11, and 

• the comparisons are conducted with only a few metrics. 

In this paper, a novel systematic benchmarking method for evaluating binary-classification performance metrics, which 

overcome the limitations of the previous studies in the literature is proposed. The method is tested on fifteen performance 

metrics. The results reveal that CK and MCC are undifferentiated from many perspectives (also interpreted in [21]), but 

clearly distinguishes one of them as the most robust metric. 

In the literature, binary-classification performance metrics evaluated only limited aspects of metrics. On the other hand, 

our method proposes fifteen new criteria that scrutinize different aspects of metrics and three criteria that have been studied 

before in the literature. This study differentiates itself from the literature by producing scaled scores, which facilitate 

comparison and ranking. Moreover, the proposed metric space includes all possible cases, enabling us to carry out 

comparisons systematically. 

2  Research questions and objectives 

This study's main research question is “Whether we can systematically analyze and comprehensively compare the binary-

classification metrics?”, and the objective of the study is to identify which instruments are robust to use in binary 
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classification. This study is distinctive for the following contributions to the literature (refer to Appendix B for the 

abbreviations of the performance measures and metrics addressed in this study.1): 

• Proposing a systematic and comprehensive benchmarking method for binary-classification performance metrics, 

• Suggesting meta-metrics to assess the desired measurable capacity of any given performance metric, and 

• Evaluating and comparing thirteen metrics, namely TPR, TNR, PPV, NPV, ACC, INFORM, MARK, BACC, G, nMI, 

F1, CK, and MCC, along with two recently proposed metrics, via the proposed benchmark. 

Note that zero-one “loss” metrics are not included in benchmarking to avoid redundancy because they are just the 

complement of the evaluated performance metrics (i.e. MCR = 1 − ACC, FPR = 1 − TNR, FNR = 1 − TPR, FDR = 1 − PPV, 

and FOR = 1 − NPV). Some of our benchmark findings align with the literature for some metrics such as TPR, ACC, F1, 

CK, and MCC. However, numerous new defects have been identified for widely-used metrics such as BACC, G, nMI, and 

F1. Besides, to the best of our knowledge, BACC, nMI, CK, and MCC have not been explicitly compared in the literature. 

nMI is an entropy-based metric that normalizes the mutual information (MI) indicating the strength of association in the 

contingency table is used for binary-classification, namely prior (“ground truth”: P or N) and posterior (“prediction”: OP 

or ON) distributions. For the entropy-based instruments, which are the subtype of confusion-matrix derived instruments, 

the following equation is valid: MI = HC + HO – HOC (see Appendix B) where HC: class entropy, HO: outcome entropy, 

and HOC: Joint Entropy [22, 23].  

The rest of the paper is structured as follows. Section 3 proposes a benchmarking method to assess performance metrics. 

Section 4 summarizes benchmarking findings. Section 5 reviews benchmarking methods used in the literature and 

compares them with our results. Section 6 demonstrates another application of meta-metrics for evaluating the class-

imbalance effect on synthetic classifiers. Section 7 describes BenchMetrics usage in graphical-based performance metrics. 

Section 8 describes the exclusion of probabilistic error/loss performance instruments. The final section summarizes the 

methods and highlights the findings and significance of this study. Appendix A provides complementary materials online 

for the proposed method, such as the BenchMetrics library, an interactive benchmarking platform, and other materials and 

datasets. Appendix B lists the abbreviations of the performance measures and metrics addressed in this study. 

3  BenchMetrics: A proposed method for performance-metrics benchmarking 

The literature has addressed performance metrics’ weakness in a limited scope, such as the prevalence effect (also known 

as class-skew sensitivity or class imbalance problem). Most of the performance metrics are sensitive to class skewness [24]. 

Without any change in a classification model, its performance in terms of those metrics can increase upon changing the 

positive/negative class samples’ distribution. Straube and Krell [17] conclude that ACC, F1, MCC, and nMI are sensitive 

to class skew and DPR, BACC, WACC, and G are class-insensitive based on a single example via a single hypothetical 

classifier having TPR = 0.9 and TNR = 0.7. Brzezinski et al. [21] conduct a manual analysis of eight metrics’ outcomes for 

five class-ratio categories (1:15, 1:4, 1:1, 4:1, 15:1) via histogram graphics. 

The literature touches upon problematic performance metrics, especially TPR, PPV, ACC, and F1. Valverde-Albacete and 

Peláez-Moreno [25] report that higher Accuracy values could be misleading. Shepperd [26] also indicates that F1 yields 

significantly high values (about 0.7) on highly skewed datasets and exhibits a misrepresenting of high performance in low 

prevalence datasets. Straube and Krell [17] recommend DPR, BACC, WACC, and G instead of ACC, F1, MCC, and nMI 

considering prevalence effect. Schröder, Thiele, and Lehner suggest using INFORM, MARK, and MCC instead of PPV, 

TPR, and F1 [27]. Forbes [15] recommends nMI as a nontraditional metric. Delgado and Tibau [28] examine CK and MCC 

in unbalanced datasets via the specific confusion matrix cases and show the pitfalls in CK. Chicco and Jurman [20] review 

ACC, F1, and MCC. They compare those metrics based on (a) metric values in terms of class sizes corresponding to the 

perfect classification/misclassification (FP and FN = 0 / TP and TN = 0) and  random classification (i.e. expected confusion 

matrix elements: TP = FP = P/2 and TN = FN = N/2), (b) metric values corresponding to six class-ratio categories for 

                                                           

1 Note that ‘performance metrics’ that are in [0, 1] or [-1, 1] directly represents the success of a classifier (e.g., Accuracy 

or True Positive Rate). Those metrics are the instruments published in the literature to report, evaluate, and compare 

classifiers. Whereas, ‘performance measures’ that are usually not published represent other aspects such as dataset or 

classifier’s output characteristics (e.g., PREV is the ratio of positive examples in a dataset and BIAS is the ratio of positive 

outcomes of a classifier). Some instruments indicating the performance in an unbounded interval [0, ∞) or (−∞, ∞) are also 

‘measures’ that are not applicable to publish and compare classification performances in the literature (e.g., Odds Ratio or 

Discriminant Power) because of limitations in interpretability. 
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Sn = 100 (high/middle positive/negative class imbalance and balanced class sizes), and (c) the linear relationship among 

the three metrics. 

To evaluate all the metrics from a comprehensive perspective in a methodological manner, we proposed a benchmarking 

method comprising two stages described in the following subsections and depicted in Fig. 1: 

• Stage-1: Mathematical evaluation: The equations of each metric, confusion matrix variance behaviors, and the 

metric-spaces are evaluated according to eleven different criteria. 

• Stage-2: Meta-metrics: The robustness of each metric is evaluated by seven novel meta-metrics (i.e. metrics about 

(performance) metrics) defined formally in metric-space. 

 

Fig. 1 BenchMetrics: inputs, stages, outputs, evaluation criteria/meta-metrics for metrics and metric-spaces. The method 

was tested for the benchmarking data for 13 metrics (Experiment-1) and 15 metrics with two recently proposed metrics 

(Experiment-2). The evaluated metrics are ranked according to overall robustness values. The experiments also provide 

specific robustness issues indicated by low values in criteria or meta-metrics, all of which are described in this study. 
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3.1  Benchmarking data 

This subsection introduces a new aspect of metrics named “metric-space” before describing the BenchMetrics in stages 

conducted on the metric-spaces. 

Metric-space: metric’s outcome distribution in pseudo-universal “base performance measure permutations” 

All possible performance results (i.e. classifiers’ outcomes) of a binary classification conducted on a dataset with a sample 

size (Sn) are the permutations of base measures (TP, FP, FN, TN), a total of which yields the same Sn. We define this 

vector with four elements in Definition 1 below and call it “base performance measure permutations” or shortly “base-

measure permutations” (BMSn) that provide a pseudo-universal space for analyzing metrics’ outcomes. 

A metric-space (M) defined in this study keeps the corresponding performances in terms of a specific metric (M) per each 

permutation. It allows us to analyze and compare how metrics summarize classification outcomes in the complete coverage 

of performance results. It is ‘pseudo’ because of the sample size (Sn) dependency. In this paper, we represent metric-spaces 

in bold (e.g., ACC metric-space vector for ACC metric), single metric values in italic (e.g., ACC = 0.9), and set or array 

of metric values in bold-italic (e.g., BM = {TP = 7, FP = 1, FN = 0, TN = 2}). Definition 2 expresses a metric-space for a 

given Sn. 

 

Definition 1 (Universal Base-Measure Permutations) A vector 𝐁𝐌𝑆𝑛 shows all possible base-measure permutations 

with repetition where each ith element of 𝐁𝐌𝑆𝑛  is 𝐁𝐌𝑖
𝑆𝑛: 𝑩𝑴 → ℤ∗4  and 𝑩𝑴 =  {𝑇𝑃, 𝐹𝑃, 𝐹𝑁, 𝑇𝑁}  and 𝑇𝑃𝑖 + 𝐹𝑃𝑖 +

𝐹𝑁𝑖 + 𝑇𝑁𝑖 = 𝑆𝑛 and 0 ≤ 𝑇𝑃𝑖 , 𝐹𝑃𝑖 , 𝐹𝑁𝑖 , 𝑇𝑁𝑖 ≤ 𝑆𝑛. 

Definition 2 (Metric-Space) A metric-space M or 𝐌𝑆𝑛 covers the outputs given by an M metric for all the elements of  

𝐁𝐌𝑆𝑛 base-measure permutations for a sample size of Sn. 

 

For example, there are 286 permutations of four base measures with repetition for ten samples, where the sum of the base 

measures is equal to ten, as shown in Fig. 4. An example permutation is ten true positives only (TP = 0, all others are zero). 

Another example might be seven true positives, one false positive, and two true negatives (TP = 7, FP = 1, FN = 0, TN = 2). 

Metrics summarize base measures (confusion matrix) into a single figure (e.g., summarizing TP = 7, FP = 1, FN = 0, 

TN = 2 permutation as ACC = 0.9), and metric-spaces provide all possible performance metric values that are calculated 

for any metric covering each permutation (F1, ACC, and MCC examples are depicted in Fig. 4). 

Metric-spaces and dataset size (Sn)  

The size of base-measure permutations and corresponding metric-spaces increases exponentially2 with Sn. For instance, 

the size is 2,667,126 permutations for a dataset with 250 samples. Metrics are the ratios (e.g., TC / Sn where 0 ≤ TC ≤ Sn) 

in a closed interval (either [0, 1] or [-1, 1]), and the sample size is reduced in the numerator/denominator of the metrics’ 

equations. Hence the size reflects metric-space granularity that is the precision in transitions in different permutations. The 

metric-space's overall characteristics are the same for different Sn values (the density graphs shown in Fig. 3 are similar 

and descriptive statistics converges). 

BenchMetrics analyzes the robustness of metrics over metric-spaces, not datasets (e.g., ACC can be 1.0 for any dataset 

size). Hence, no classification cases including the extreme cases such as (the lowest performance case: TP = 0 and TN = 0 

where FC = FP + FN > 0), (the extreme class imbalance case: P = 0 or N = 0), and (the extreme bias case: OP = 0 or ON = 

0) are missing in the analysis. The mathematical characteristics (e.g., metric-space distribution) and the relation between 

metric-spaces (e.g., ACC and PREV metric-spaces) are evaluated from different aspects. Note that we tested the related 

benchmarking criteria with different Sn values in our experiments. We observed that the results are the same (for two meta-

metrics, namely UBMcor and UIMBucor) or converge as Sn increases. For the remaining five meta-metrics, we averaged 

meta-metric intermediate values calculated for metric-spaces generated for Sn = 25, 50, 75, 100, 125, 150, 175, 200, and 

250 to eliminate the possible dataset-size effect. We limit the maximum sample size to 250 to keep the permutation 

granularity and calculation time in a reasonable precision and range. Calculation of the meta-metrics in metric-spaces up 

to a sample size of 250 (except for consistency and discriminancy meta-metrics) takes a maximum of one minute on an R 

version 3.5.2 (2018-12-20) platform on a Darwin 15.6.0 operating system with 2.3 GHz CPU and 16 GB RAM. The 

calculation of the complete set of proposed meta-metrics for a single metric, including consistency and discriminancy, 

                                                           

2 Sample sizes (permutations/metric-space sizes): Sn = 25 (3,276); Sn = 50 (23,426); Sn = 75 (76,076); Sn = 100 (176,851); 

Sn = 125 (341,376); Sn = 150 (585,276); Sn = 175 (924,176); Sn = 200 (1,373,701); Sn = 250 (2,667,126) 
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takes 21 hours and 45 minutes. Note that detailed time test results and metric-space data for different sample sizes between 

10 and 250 are provided in the online material. 

3.2  Stage-1: Mathematical evaluation benchmarking 

In this stage, we propose eleven criteria to evaluate different metrics from mathematical perspectives.  

3.2.1  Criterion-1 – Criterion-3: Performance element coverages 

By definition, a metric as a mathematical function M({TP, FP, FN, TN}, {P, N}, {OP, ON}) should not have a missing 

facade of fundamental performance element sets, namely four base measures, class measures, and outcome measures, 

respectively. Otherwise, they cannot be applied to completely summarize the confusion matrix and the number of classes 

and classification outputs. For example, as the name implies, True Positive Rate (𝑇𝑃𝑅 = 𝑇𝑃/𝑃 = 𝑇𝑃𝑅({𝑇𝑃}, {𝑃}, {∅}) 

reflects only the correct classification of positive-class performance, but it does not sense incorrect classification (e.g., no 

FP) and negative-class performances (e.g., no N). We provide the following three criteria that can help to distinguish the 

limitations of metrics by mathematical functional definition: 

Criterion-1 (Outcome/class coverage): A metric function should not have outcome measures only (i.e. includes {OP or 

ON} without {P or N}) or class measures only (i.e. includes P or N} without OP or ON}). 

Criterion-2 (Class coverage): A metric function should fully cover the class arguments ({P or OP} with {N or ON}) 

without excluding any class. 

Criterion-3 (Base-measure coverage): A metric function should cover the base performance measures ({TP, FP, FN, TN}) 

without excluding any measure. 

3.2.2  Criterion-4 – Criterion-6: Variance/invariance 

Contrary to association measures, invariance (i.e. not differentiating the swaps among base measures) might not be a 

desirable characteristic of a robust performance metric. Any change making four base measures of the confusion matrix 

different should ideally be distinguished. Fig. 2 depicts the three types of swaps we used to assess a toy classification 

example's metrics' variance. A performance metric should be variant to class swap and variant to outcome swap because 

base measures become different, as given in Fig. 2 (b) and (c) with the original ones in Fig. 2 (a). Otherwise, the metric 

does not differentiate such classification results. 

 

 

Fig. 2 Three types of swaps of (a) an original confusion matrix (base measures): (b) Criterion-4: Variant to class swap 

(horizontally: between TP and FP along with FN and TN), (c) Criterion-5: Variant to outcome swap (vertically: between 

TP and FN along with FP and TN), and (d) Criterion-6: Invariant to class-and-outcome swaps (diagonally: between TP 

and TN along with FP and FN) 
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To find the variance or invariance of a metric, the base measures in a metric’s equation should be changed according to the 

type of swaps, as shown in Fig. 2 (b – d), and the original and swapped version equations are compared. For example, 

switching classes in 𝑇𝑃𝑅 = 𝑇𝑃/𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  makes the equation 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) = 𝐹𝑃/𝑁 = 𝐹𝑃𝑅 , which is 

different from the original metric. Hence, TPR is a variant to class swap. Whereas, class-and-outcome exchanges in 𝑀𝐶𝐶 =

(𝑇𝑃 ⋅ 𝑇𝑁 − 𝐹𝑃 ⋅ 𝐹𝑁) √𝑃 ⋅ 𝑁 ⋅ 𝑂𝑃 ⋅ 𝑂𝑁⁄  result in no variance (𝑇𝑁 ⋅ 𝑇𝑃 − 𝐹𝑁 ⋅ 𝐹𝑃) √𝑂𝑃 ⋅ 𝑂𝑁 ⋅ 𝑃 ⋅ 𝑁⁄ = 𝑀𝐶𝐶. Table 1 

also shows the known metrics corresponding to each swap. We identified only two metrics that contradict these criteria: 

nMI and F1. F1 is not invariant to class and outcome swaps because it has no TN coverage as addressed in base measure 

coverage in Table 1. In the literature, Sokolova and Lapalme [13] suggest eight invariance properties, one of which (I1 as 

stated) directly corresponds with our criterion, namely class-and-outcome swapping and examines six metrics (TPR, TNR, 

PPV, ACC, BACC, and F1). The remaining four properties indicate the variance by changing TN-only (I2), TP-only (I3), 

FN-only (I4), and FP-only (I5), which are quickly evaluated by our base-measure coverage criterion (Criterion-3). For 

example, F1 has “No TN” base measure coverage that corresponds to I2 invariance. The remaining three properties scale 

all the base measures, class components separately (P: TP and FN – N: TN and FP), and outcome components separately 

(OP: TP and FP – ON: TN and FN), which are addressed by our Criterion-1, Criterion-2, and Criterion-3 simply. 

3.2.3  Criterion-7 – Criterion-11: Descriptive statistics 

The distribution and descriptive statistics such as range, mean, median, and standard deviation calculated for the metric-

space of a metric give insights about the dispersions and transitions of metric outputs. Fig. 3 illustrates density graphs along 

with the range, mean, median, and mode statistics per metric. Each density graph shows the metric-space in terms of 

relative frequencies per equally spaced breaks in the metric’s range. A fitted normal distribution curve over the mean is 

also attached where possible (ACC, INFORM, BACC, CK, and MCC). The most important findings shown in Fig. 3 are 

that the distributions are different, and not all the performance metrics show smooth and continuous transitions. The 

revealed difference could be another motivation to identify the most robust metric. The following criteria we defined are 

important for metric evaluation: 

Criterion-7 (Undefined (NaN) counts): The number of undefined values (not-a-number, NaN) due to 0/0 divisions is listed 

in Table 1. The NaN count of MCC is the highest with proportional to Sn, whereas ACC, F1, and CK have zero, one, and 

two NaNs, respectively, regardless of Sn. Robust metrics are expected to calculate any base-measure permutations without 

any exception. 

 

 

Fig. 3 Density graphs summarizing each of the nine metric-spaces (TNR, PPV, and NPV are the same as TPR; MARK 

is the same as INFORM) (the area under the distribution is one) 
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Table 1 Experiment-1: Stage-1 benchmarking results for 13 performance metrics according to 8 proposed criteria along with three informative criteria (Criterion-9 – Criterion-11) 

Stage-1 

Criteria 
CK MCC F1 INFORM MARK BACC G ACC TPR PPV TNR NPV nMI 

1 Yes Yes Yes Class-only Outcome-only Class-only Class-only None Class-only 
Outcome-

only 

Class-

only 

Outcome-

only 
Yes 

2 Yes Yes Yes Yes None P-only N-only Yes 

3 Yes Yes No TN TP, TN TP, TN TP-only TN-only Yes 

4 Yes Yes Yes Yes Yes (MCR) Yes (FPR) Yes (FDR) Yes (FNR) Yes (FOR) No (nMI) 

5 Yes Yes Yes Yes Yes (MCR) Yes (FNR) Yes (FOR) Yes (FPR) Yes (FDR) No (nMI) 

6 Yes Yes No Yes Yes Yes Yes 

7 2 4Sn 1 2(Sn+1) 0 Sn+1 4 

8 𝐌̅ ≠ 𝐌̃ = 𝐌𝐨 𝐌̅ ≈ 𝐌̃ = 𝐌𝐨 𝐌̅ ≈ 𝐌̃ ≠ 𝐌𝐨 𝐌̅ = 𝐌̃ = 𝐌𝐨 𝐌̅ ≈ 𝐌̃ ≠ 𝐌𝐨 𝐌̅ = 𝐌̃ ≈ 𝐌𝐨 𝐌̅ = 𝐌̃ ≠ 𝐌𝐨 𝐌̅ ≠ 𝐌̃ ≠ 𝐌𝐨 

Stage-1 

Rank 
1 3 4  8 9 13 

Other informative criteria (i.e. not used in the ranking of the metrics) 

9 0.18(a) 0.20(a) 0.22 0.21(a) 0.21(a) 0.2 0.23 0.26 0.29 0.29 0.29 0.29 0.17 

10 Slightly 

positive/right 

skewed (0.16) 

Symmetric (0) Slightly 

positive/right 

skewed (0.05) 

Symmetric 

(0) 

Symmetric (0) Symmetric 

(0) 

Slightly 

positive/right 

skewed (0.18) 

Symmetric (0) Symmetric 

(0) 

Symmetric 

(0) 

Symmetric 

(0) 

Symmetric 

(0) 

Highly 

positive/right 

skewed (1.69) 

11) Platykurtic 

(-0.2) 

Platykurtic 

(-0.6) 

Platykurtic 

(-1.07) 

Platykurtic 

(-0.6) 

Platykurtic 

(-0.6) 

Platykurtic 

(-0.6) 

Platykurtic 

(-0.85) 

Platykurtic 

(-0.86) 

Platykurtic 

(-1.2) 

Platykurtic 

(-1.2) 

Platykurtic 

(-1.2) 

Platykurtic 

(-1.2) 

Leptokurtic 

(2.75) 

Criteria Criterion-1 Outcome/class (OP and ON vs. P and N) coverage; Criterion-2 Class (P with N or OP with ON) coverage; Criterion-3 Base-measure (TP, FP, FN, and TN) coverage; 

Criterion-4 Variant to class swap(b); Criterion-5 Variant to outcome swap(b); Criterion-6 Invariant to class-and-outcome swaps; 

Criterion-7 Undefined (NaN) count ; Criterion-8 Central tendencies (mean-median difference)(c) 

 Informative Criteria 

Criterion-9 Standard Deviation; Criterion-10 Skewness; Criterion-11 Kurtosis(d) 

Notes: (a) When normalized into [0, 1]. 

(b) The corresponding metric name after swapping is displayed in braces. 

(c) 𝐌̅: mean, 𝐌̃: median, and 𝐌𝐨: mode of a metric-space 

(d) Kurtosis types: Platykurtic: thin-tailed, Leptokurtic: fat-tailed, Mesokurtic (normal tail shape) 
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Criterion-8 (Central tendencies): The central tendency defined by mean, median, and mode should be examined for 

metric-spaces. Only INFORM, MARK, and BACC have precisely the same three central tendencies. However, a mean-

median difference (i.e. arithmetic vs. positional average in sorted metric-space) was observed in nMI and CK (even though 

CK is symmetric). The difference could indicate an imbalance in mapping the uniform classification performance results 

(i.e. base-measure permutations) to the corresponding uniform output ranges of a metric-space. 

Criterion-9 (Standard deviation): Informatively, the standard deviation of nMI and CK are the lowest, indicating low 

dispersion around their mean values, whereas others disperse over a higher range of values in metric-space as can be seen 

in Fig. 3. 

Criterion-10 (Skewness) and Criterion-11 (Kurtosis): The shape of distributions: Table 1 shows two measures to 

recognize the form of metric-space distribution and dispersion shown in the graphs in Fig. 3. Most metric-spaces are 

symmetric and platykurtic (thin-tailed) except CK, F1, G, and nMI. Note that G and F1 metric-spaces exhibit unexpected 

distortions by yielding zero dominantly, which indicates the particular accumulation points in metric-space. Table 1 shows 

the results of the Stage-1 benchmarking along with the metrics’ ranks. The underlined bold texts depict the deficiencies, 

and each criterion is taken as equally important. The last three criteria are informative and not included in benchmarking 

ranking.  

3.3  Stage-2: Meta-metrics benchmarking 

Stage-2 measures the robustness of performance metrics via our proposed meta-metrics (i.e. metrics about (performance) 

metrics). The meta-metrics in [0, 1] interval are calculated in metric-spaces (0 for the least and 1 for the most robust case). 

We obtained each meta-metric for the reviewed performance metrics such as Accuracy or MCC in different Sn sample 

sizes in our experiments. We observed that some meta-metric values are equal regardless of the sample size or converge 

consistently as Sn increases. For the latter case, we calculated the meta-metric values for several Sn values and obtained 

their averages as the final meta-metric value. Fig. 4 depicts six of the seven proposed meta-metrics calculated for some 

example metrics in a sample size of ten. 

 

 

Fig. 4 Depiction of six of seven meta-metrics for 286 base-measure permutations (sample size 10): 1) UBMcor for F1 

metric; 2) UIMBucor for F1; 3) UDist for ACC; 4) UMono for CK; and 5-6) UCons and UDisc for ACC versus nMCC 

(MCC normalized into [0, 1] interval) (refer to Section 3.3.4 and Fig. 3 for UOsmo meta-metric) 
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The following subsections describe and give formal definitions of each meta-metric along with Experiment-1 intermediate 

results. 

3.3.1  Meta-metric-1: Base measure correlations (UBMcor) 

The correlation between a metric-space and each base measure gives their degree of relationship. Robust metrics should 

be correlated with all base performance measures from an objective perspective unless otherwise required. The correlations 

with FP and FN must be negative for a performance metric (i.e. it should go higher as FP and FN go lower). Fig. 4 shows 

the F1 metric-space with corresponding BM permutations as an example. The correlations with TP, −FP, −FN, and TN, 

along with the final UBMcor meta-metric value, are also displayed. 

We used Spearman correlation (ρ, ‘rho’) in two meta-metrics, which is less sensitive to outliers than Pearson correlation 

that also assumes linearity among the metric-space and base measure spaces (or prevalence spaced for UIMBucor meta-

metric described below). Spearman correlation significance level (α) is taken as 0.05. Table 2 lists Spearman’s rho 

correlation values for all benchmarked metrics. Recall that underlined bold texts depict the deficiencies. 

 

Table 2 Experiment-1: meta-metric UBMcor values [0, 1] and correlations with TP, −FP, −FN, TN 

 
ρ  ACC MCC INFORM MARK BACC CK G F1 TPR PPV TNR NPV nMI 

C
o

rr
el

at
io

n
s TP 0.55* 0.55* 0.54* 0.54* 0.54* 0.53* 0.54* 0.93* 0.78* 0.78* 0 0 -0.05* 

TN 0.55* 0.55* 0.54* 0.54* 0.54* 0.53* 0.54* 0 0 0 0.78* 0.78* -0.05* 

−FP 0.55* 0.55* 0.54* 0.54* 0.54* 0.55* 0.49* 0.43* 0 0.78* 0.78* 0 0.05* 

−FN 0.55* 0.55* 0.54* 0.54* 0.54* 0.55* 0.49* 0.43* 0.78* 0 0 0.78* 0.05* 

UBMcor 0.55 0.55 0.54 0.54 0.54 0.54 0.52 0.45 0.39 0.39 0.39 0.39 0.00 

* correlation is significant at the 0.05 level 

 

UBMcor meta-metric reveals that F1 has zero correlation with TN values, whereas it is highly correlated with TP but lower 

correlated with false positives/negatives than true positives. CK has a lower correlation with true positives/negatives (i.e. 

more emphasis on performance errors than successes) compared to the others. G is class-balanced (i.e. correlations for TP 

vs. TN and −FP vs. −FN are the same), but it is lower correlated with negative false positives/negatives than true 

positives/negatives (0.49 < 0.54). ACC, INFORM, MARK, BACC, and MCC are ideally all balanced (i.e. absolute 

correlations for TP vs. −FP vs. TN vs. −FN are the same). nMI has the lowest correlations with base measures. 

The meta-metric UBMcor is the arithmetic average of correlations of a metric-space (M) with each of the four base-

measure-spaces (false positive/negatives are negated), as calculated in Eq. (1). 

𝑈𝐵𝑀𝑐𝑜𝑟 = 1
4⁄ (𝜌𝐌,𝐓𝐏 + 𝜌𝐌,−𝐅𝐏 + 𝜌𝐌,−𝐅𝐍 + 𝜌𝐌,𝐓𝐍) (1) 

3.3.2  Meta-metric-2: (Class) imbalance uncorrelation (UIMBucor) 

Robust metrics should not be influenced by class imbalance (i.e., increasing/decreasing performance values by changing 

the class ratios). The correlation between corresponding sub-metric-spaces and two half-ranges of PREV ([0, 0.5] and [0.5, 

1]) shows the degree of bias between classification performance and class imbalance. Fig. 4 above shows the F1 metric-

space and corresponding PREV values above and below balanced classes (PREV ≤ 0.5 and PREV ≥ 0.5). Meta-metric 

UIMBucor is calculated by for a metric-space M, as shown in Eq. (2), where Ma represents the sub-metric-space according 

to condition a. 

𝑈𝐼𝑀𝐵𝑢𝑐𝑜𝑟 = 1-
(|𝜌𝐌𝑃≤𝑁,𝐏𝐑𝐄𝐕𝑃≤𝑁

| + |𝜌𝐌𝑃≥𝑁,𝐏𝐑𝐄𝐕𝑃≥𝑁
|)

2
⁄  

(2) 

Hence, for example, 𝜌𝐌𝑃≤𝑁,𝐏𝐑𝐄𝐕𝑃≤𝑁
is the correlation between M and PREV sub-metric-spaces having corresponding pairs 

where P ≤ N (i.e. PREV ≤ 0.5), vice versa. Note that absolute correlations are used because the direction of the correlation 

(i.e. whether correlated or inverse correlated) is not essential; hence the two correlations will not cancel out each other. As 
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shown in Table 3, only PPV, NPV, F1, nMI, CK, and G are correlated with class imbalance regardless of the sample 

sizes. 

 

Table 3 Experiment-1: meta-metric UIMBucor values [0, 1] 

 TPR TNR ACC INFORM MARK BACC MCC G CK nMI F1 PPV NPV 

UIMBucor 1 1 1 1 1 1 1 0.97* 0.96* 0.91* 0.64* 0.55* 0.55* 

* correlation is significant at the 0.05 level (the correlations of the metric-spaces (e.g., TPR) with UIMBucor is zero and are not significant) 

3.3.3  Meta-metric-3: Distinctness (UDist) 

As each base-measure permutation differs from each other, a robust metric should differentiate these different cases in 

metric-space. Fig. 4 above depicts how UDist is calculated for ACC metric as an example. The number of unique values 

of the metric-space (e.g., 11 unique values for ACC) is compared against the metric-space size (the number of unique 

values in BM permutations, e.g., 286 for Sn = 10). The distinctness meta-metric defined formally below gives metrics’ 

granularity in metric-space as listed in Table 4. 

 

Definition 3 (Universal Distinctness) UDist measures the ratio of unique values in the metric-space of a metric M where 

𝐌: 𝐁𝐌𝑆𝑛 → ℝ and UUniq is a finite set where 𝐌: 𝐔𝐔𝐧𝐢𝐪 → ℝ≥1 and 𝑈𝐷𝑖𝑠𝑡 = |𝐔𝐔𝐧𝐢𝐪|/|𝐁𝐌𝑆𝑛|. 

 

Table 4 Experiment-1: meta-metric UDist minimum, average, and maximum values [0, 1] 

UDist nMI BACC INFORM MARK MCC CK G TPR TNR PPV NPV F1 ACC 

Min 0.3 0.3 0.3 0.3 0.23 0.17 0.18 0.007 0.007 0.007 0.007 0.007 0.0001 

Average 0.38 0.35 0.35 0.35 0.24 0.20 0.20 0.02 0.02 0.02 0.02 0.02 0.001 

Max 0.4 0.4 0.4 0.4 0.24 0.24 0.20 0.06 0.06 0.06 0.06 0.06 0.008 

Sample Size and Permutations: Sn=25 (3,276); Sn=50 (23,426); Sn=75 (76,076); Sn=100 (176,851); Sn=125 (341,376); 

Sn=150 (585,276); Sn=175 (924,176); Sn=200 (1,373,701); Sn=250 (2,667,126)  

 

To the contrary of the first two meta-metrics, UDist values might differ per Sn. We calculated UDist values for nine 

different sample sizes (given in the footnotes of Table 4) and benchmarked the metrics according to their average values. 

While nMI has the most distinct metric-space, ACC has the least. Unexpectedly, F1 has the same level of distinctness as 

TPR, TNR, PPV, and NPV metrics. 

3.3.4  Meta-metric-4: Output smoothness (UOsmo) 

Output smoothness evaluates how a metric uniformly uses its output range. As each variation in corresponding base 

measures is a unit change, a metric-space should exhibit a smooth transition. Fig. 5 shows the transition of metric-spaces 

sorted in ascending order. 

Unexpectedly, we discovered a repeating stepped transition in ACC. Moreover, as mentioned in the shape of distributions 

criteria in Stage-1, G and F1 dominantly yield zero. Stepped changes indicate a robustness defect where a metric produces 

coarse resolution in steps or accumulates in some values. These behaviors degrade a metric’s ability to differentiate 

different classification results (e.g., two classifiers’ performance are more likely to fall into the same amount than if a 

smoother metric is used). Eq. (3) is used to measure the smoothness without a need for visual inspection where 𝚫𝑆𝑛 =
{𝛿𝑖  | 𝑖 = 2, … , 𝑆𝑛} and 𝚫𝑆𝑛

absolute = {|𝛿𝑖| | 𝑖 = 2, … , 𝑆𝑛} and 𝛿𝑖 = 𝐬𝐌𝑖 − 𝐬𝐌𝑖−1. 

𝑜𝑠𝑚𝑜𝑆𝑛 = std(𝚫𝑆𝑛)/avg(𝚫𝑆𝑛
absolute) (3) 

sM denotes the sorted metric-space in increasing order, sMi denotes the ith value of the sorted metric-space, and std and 

avg are the standard deviation and average (arithmetic mean) functions. The equation calculates the coefficient of variation 

for one lagged self-difference. The minimum the result, the maximum the smoothness is. 
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Fig. 5 Sorted metric-spaces’ transitions. The transitions MARK and INFORM and TNR, PPV, NPV, and TPR are similar 

(y-axis shows the metric’s outputs, and the x-axis shows the index of the elements in the metric-space, total 3,276 for 

Sn = 25) 

 

We average the smoothness values calculated for the sample sizes between 25 and 250 (see Table 5’s notes for the sample 

sizes) and Eq. (4) to get the UOsmo meta-metric for a metric Mk by normalizing the smoothness values (osmo) among all 

the compared metric-spaces (METRICS, e.g., benchmarked 13 metrics). Table 5 shows the smoothness and UOsmo meta-

metric values for the compared metrics. 

𝑈𝑂𝑠𝑚𝑜M𝑘 =
avg(𝑜𝑠𝑚𝑜M𝑘

𝑆𝑛=25,⋯,250) − min
∀M𝑙

{avg(𝑜𝑠𝑚𝑜M𝑙
𝑆𝑛=25,⋯,250)}

max
∀M𝑙

{avg(𝑜𝑠𝑚𝑜M𝑙
𝑆𝑛=25,⋯,250)} − min

∀M𝑙
{avg(𝑜𝑠𝑚𝑜M𝑙

𝑆𝑛=25,⋯,250)}
,  M𝑘, M𝑙 ∈ METRICS  

(4) 

 

Table 5 Experiment-1: meta-metric UOsmo values [0, 1] and the minimum, average, and maximum smoothness values per 

base measure 

  INFORM MARK BACC CK MCC G TPR TNR PPV NPV F1 nMI ACC 

Min 
Smoothness 

(osmo)(a) 

2.07 2.07 2.07 2.92 3.02 3.79 3.39 3.39 3.39 3.39 4.02 6.94 5.25 

Average 4.73 4.73 4.73 8.08 8.46 11.67 15.61 15.61 15.61 15.61 18.03 45.44 91.71 

Max 9.79 9.79 9.79 16.74 18.94 27.07 41.73 41.73 41.73 41.73 47.70 135.93 409.47 

  UOsmo 1 1 1 0.96 0.96 0.92 0.87 0.87 0.87 0.87 0.85 0.53 0 

(a) Minimum, average, and maximum smoothness are calculated for Sn=25, 50, 75, 100, 125, 150, 175, 200, and 250 

 

ACC and nMI have the least smooth metric-spaces, following Fig. 3, whereas CK and MCC have slightly unsmooth metric-

spaces than INFORM, MARK, and BACC. 

3.3.5  Meta-metric-5: Monotonicity (UMono) 

A robust metric should be sensitive to small changes in classification performance. UMono meta-metric is calculated per 

four base measures by increasing TP and TN by one and decreasing FP and FN by one separately for each of BM 

permutations (hence raising classification performance in the smallest scale) and checking whether the new metric value 

does not decrease. Otherwise, it is considered an explicit violation in a metric-space. The formal definition is given in 

Definition 4. Our analysis reveals that the metrics do have 100% monotonicity except for INFORM, MARK, BACC, 

nMI, and CK, as listed in Table 6. 
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Table 6 Experiment-1: meta-metric UMono values [0, 1] per base measure (the metrics are sorted according to UMono 

values and the average of the four meta-metric sub-values: UMonoTP, UMonoTN, UMonoFP, UMonoFN) 

UMono TPR TNR PPV NPV ACC G F1 MCC INFORM MARK BACC CK nMI 

UMonoTP 1 1 1 1 1 1 1 1 0.9990 0.9990 0.9990 1 0.5029 

UMonoTN 1 1 1 1 1 1 1 1 1 1 1 1 0.5029 

UMonoFP 1 1 1 1 1 1 1 1 1 1 1 0.9005 0.5032 

UMonoFN 1 1 1 1 1 1 1 1 1 1 1 0.9005 0.5032 

UMono 1 1 1 1 1 1 1 1 0.9995 0.9995 0.9995 0.9502 0.5031 

 

Definition 4 (Universal Monotonicity) 𝑈𝑀𝑜𝑛𝑜𝑏𝑚  gives the ratio of cases where a metric-space M adjusts its performance 

value congruous with the unit changes (±1) by bm ∈ {TP, TN, FP, FN} in metric-space. ∀ 𝐌𝑖 : 𝐁𝐌𝑆𝑛 → ℝ  and 

𝐌𝑖±: 𝐁𝐌𝑆𝑛±1 → ℝ where i = 1, …, Sn: 

𝐌𝑖+: 𝐁𝐌𝑺𝒏+𝟏 = {
{𝑇𝑃𝑖 + 1,  𝐹𝑃𝑖 ,   𝐹𝑁𝑖 ,   𝑇𝑁𝑖}, 𝑏𝑚 = 𝑇𝑃

{𝑇𝑃𝑖 ,  𝐹𝑃𝑖 ,   𝐹𝑁𝑖,   𝑇𝑁𝑖 + 1}, 𝑏𝑚 = 𝑇𝑁
 

𝐌𝑖−: 𝐁𝐌𝑺𝒏−𝟏 = {
{𝑇𝑃𝑖 ,  𝐹𝑃𝑖 − 1,  𝐹𝑁𝑖 ,   𝑇𝑁𝑖}, 𝑏𝑚 = 𝐹𝑃

{𝑇𝑃𝑖 ,  𝐹𝑃𝑖 ,   𝐹𝑁𝑖 − 1,   𝑇𝑁𝑖}, 𝑏𝑚 = 𝐹𝑁
 

𝐌𝐨𝐧𝐨𝑏𝑚  = {(𝐌𝑖 , 𝐌𝑖±): 𝐌𝑖± ≥ 𝐌𝑖} 

𝑈𝑀𝑜𝑛𝑜𝑏𝑚 = |𝐌𝐨𝐧𝐨𝑏𝑚| |𝐁𝐌𝑆𝑛|⁄  

 

CK −as parallel to UBMcor meta-metric shown in Table 2− has 90% monotonicity for FP and FN decrements (10% 

violations), and BACC has 99% monotonicity (1% violation) for TP and TN increments. For example, CK is −0.176 for 

TP = 1, FP = 7, FN = 1, TN = 1, as shown in Fig. 4 above. Decreasing FP only by one (FP = 7 – 1 = 6) should increase the 

performance, but CK yields −0.189 violating monotonicity (i.e. −0.189 < −0.176). Increasing TP only by one (TP = 1+1, 

FP = 7, FN = 1, TN = 1) yields −0.128 preserving monotonicity (−0.128 > −0.176). In the worst case, nMI monotonicity 

violations are almost exactly half-and-half.  

3.3.6  Meta-metric-6 and 7: Inconsistency/consistency (UICons/UCons) and discriminancy (UDisc) 

The meta-metrics formally defined below are proposed for comparing two metrics’ robustness. 

 

Definition 5 (Universal Consistency and Inconsistency) 𝑈𝐶𝑜𝑛𝑠𝑀1↔𝑀2
 and 𝑈𝐼𝐶𝑜𝑛𝑠𝑀1↔𝑀2

 give the agreement and 

disagreement in increments/decrements in metric-space of two metrics 𝑀1 and 𝑀2, respectively, where 𝐌1, 𝐌2: 𝐁𝐌𝑆𝑛 →

ℝ. ∀ 𝐌1𝑖
, 𝐌1𝑗

, 𝐌2𝑖
, 𝐌2𝑗

 (different corresponding pairs of 𝑖𝑡ℎ and 𝑗𝑡ℎ values of 𝐌1 and 𝐌2) where i, j = 1, …, Sn and i ≠ j: 

𝐈𝐂𝐨𝐧𝐬𝑀1↔𝑀2
= {

(𝐌1𝑖
, 𝐌1𝑗

), (𝐌2𝑖
, 𝐌2𝑗

):

((𝐌1𝑖
> 𝐌1𝑗

) ∧ (𝐌2𝑖
< 𝐌2𝑗

)) ∨ ((𝐌1𝑖
< 𝐌1𝑗

) ∧ (𝐌2𝑖
> 𝐌2𝑗

))
} 

𝑈𝐼𝐶𝑜𝑛𝑠𝑀1↔𝑀2
= |𝐈𝐂𝐨𝐧𝐬M1↔M2

| (
|𝐁𝐌𝑆𝑛|

2
)⁄  

𝑈𝐶𝑜𝑛𝑠𝑀1↔𝑀2
= 1 − 𝐔𝐈𝐂𝐨𝐧𝐬𝑀1↔𝑀2

 

 

Definition 6 (Universal Discriminancy) 𝑈𝐷𝑖𝑠𝑐𝑀1→ 𝑀2
 gives the ratio of cases where the metric 𝑀1 yields different values 

while the metric 𝑀2 could not differentiate in metric-spaces where 𝐌1, 𝐌2: 𝐁𝐌𝑆𝑛 → ℝ. ∀ 𝐌1𝑖
, 𝐌1𝑗

, 𝐌2𝑖
, 𝐌2𝑗

 (different 

corresponding pairs of 𝑖𝑡ℎ and 𝑗𝑡ℎ values of 𝐌1 and 𝐌2) where i, j = 1, …, Sn and i ≠ j: 

𝐃𝐢𝐬𝐜𝑀1→𝑀2
= {

(𝐌1𝑖
, 𝐌1𝑗

) , (𝐌2𝑖
, 𝐌2𝑗

) :

(𝐌1𝑖
≠ 𝐌1𝑗

)  ∧ (𝐌2𝑖
= 𝐌2𝑗

)
} 

𝑈𝐷𝑖𝑠𝑐𝑀1→ 𝑀2
= |𝐃𝐢𝐬𝐜𝑀1→ 𝑀2

| (
|𝐁𝐌𝑆𝑛|

2
)⁄  
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Fig. 4 above depicts the example cases on ACC and nMCC’s real metric values (MCC normalized to [0, 1]) where Sn = 10. 

Among all possible ith and jth pairs, the first given example pairs are consistent because ith values (ACC = 0.900 and nMCC 

= 0.882) are greater than jth values (ACC = 0.800 and nMCC = 0.754) for both metrics. However, in the third example, the 

pairs are inconsistent because the ith value is greater than the jth value for ACC (0.800 > 0.700), but the ith value is less than 

the jth value for nMCC (0.762 < 0.767). For discriminancy, ACC is discriminant against nMCC in the second example, 

because ACC yields different values (0.900 ≠ 0.800) where nMCC yields the same value (0.833 = 0.833) for corresponding 

pairs. Likewise, nMCC is discriminant against ACC in the fourth example. Note that UICons/UCons and UDisc meta-

metrics are based on Huang and Ling's two formal criteria for comparing two metrics [14]. The application of these criteria 

(“degree of consistency” and “degree of discriminancy”) has become one of the most used comparative methods in the 

literature. Our improvement is transforming the degrees that are ranged differently per compared metrics into a fixed ratio 

in [0, 1] representing the cases concerning the universal BM permutations. Hence, our meta-metrics can be used for 

comparing more than two performance metrics, as shown in Tables 7 and 8. 

 

Table 7 Experiment-1: UCons values per pairs of metrics and final UCons meta-metric values (the average of the meta-

metric values per performance metric) 

 
MCC 

            

 
0.96 INFORM 

           

 
0.96 1.00 BACC 

          

 
0.96 0.94 0.94 CK 

         

 
0.96 0.91 0.91 0.94 MARK 

        

 
0.90 0.91 0.91 0.89 0.89 G 

       

 
0.88(a) 0.88 0.88 0.87 0.88 0.86 ACC 

      

 
0.79 0.79 0.79 0.78 0.79 0.81 0.83 F1 

     

 
0.76 0.77 0.77 0.75 0.76 0.77 0.76 0.85 TPR 

    

 
0.76 0.76 0.76 0.75 0.77 0.76 0.76 0.85 0.69 PPV 

   

 
0.76 0.77 0.77 0.75 0.76 0.77 0.76 0.60 0.53 0.69 TNR 

  

 
0.76 0.76 0.76 0.75 0.77 0.76 0.76 0.60 0.69 0.53 0.69 NPV 

 

 
0.50 0.50 0.50 0.51 0.50 0.54 0.52 0.53 0.52 0.52 0.52 0.52 nMI 

UCons: 0.83(b) 0.83 0.83 0.82 0.82 0.81 0.80(c) 0.75 0.72 0.72 0.70 0.70 0.51 

Rank: 1 1 1 4 4 6 7 8 9 9 11 12 13 

Examples: the cell marked with (a) (the consistency between ACC and MCC) is 88% (UConsACC↔MCC = 0.88), UCons for MCC (the 

average meta-metric values for MCC) and ACC are the cell marked with (b) (0.83) and the cell marked with (c) (0.80), respectively. 

 

Table 8 Experiment-1: UDisc values [0, 1] per ordered pairs of metrics. The metrics are sorted according to the average of 

the meta-metric values per metric. The arrows depict the direction of the discriminancy. Taking “↳ F1 ↰” as an example, 

the first arrow “↳” shows UDiscF1➝ACC, (i.e. F1’s discriminancy against ACC, as the first below and right metric) whereas 

the last arrow “ ↰” shows UDiscF1➝MARK, (i.e. F1’s discriminancy against MARK, as the first top and left metric). 

 
↳ nMI 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

 
0.001 ↳ CK ↰ 0.000 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.001 

 
0.001 0.000 ↳ MCC ↰ 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.001 

 
0.001 0.001 0.001 ↳ BACC ↰ 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

 
0.001 0.001 0.001 0.000 ↳ INFORM ↰ 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

 
0.001 0.001 0.001 0.001 0.001 ↳ MARK ↰ 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

 
0.018 0.018 0.018 0.017 0.017 0.017 ↳ F1 ↰ 0.014 0.018 0.018 0.007 0.007 0.006(a) 

 
0.044 0.043 0.043 0.044 0.044 0.044 0.040 ↳ ACC ↰ 0.043 0.043 0.043 0.043 0.042 

 
0.029 0.029 0.029 0.029 0.029 0.027 0.028 0.028 ↳ TNR ↰ 0.019 0.029 0.019 0.019 

 
0.029 0.029 0.029 0.027 0.027 0.029 0.028 0.028 0.019 ↳ NPV ↰ 0.019 0.029 0.018 

 
0.029 0.029 0.029 0.029 0.029 0.027 0.019 0.028 0.029 0.019 ↳ TPR ↰ 0.019 0.019 

 
0.029 0.029 0.029 0.027 0.027 0.029 0.019 0.028 0.019 0.029 0.019 ↳ PPV ↰ 0.018 

 
0.039 0.038 0.038 0.038 0.038 0.034 0.028(b) 0.037 0.029 0.028 0.029 0.028 G ↰ 

UDisc: 0.019 0.018 0.018 0.018 0.018 0.018 0.014 0.014 0.014 0.014 0.013 0.013 0.011 

Rank: 1 2 2 2 2 2 7 7 7 7 11 11 13 

The cell marked with (a) shows G's discriminancy against F1 (UDiscG➝F1) is 0.6%. 

The cell marked with (b) shows F1’ discriminancy against G (UDiscF1➝G) is 2.8%, shown in bold. 
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Table 7 shows the UCons values calculated for Sn = 25 per pair of the reviewed metric pairs and final UCons values that 

are the average of a metric with all the others (e.g., UConsACC = avg(UConsACC↔per other metrics). MCC, INFORM, and BACC 

are the most consistent with the other metrics on average (83%), whereas nMI is the least consistent metric (51%). For 

individual pairs, INFORM and BACC are only 100% consistent (i.e. UConsINFORM↔BACC = 1.00). Table 8 shows the UDisc 

values per ordered pairs of metrics analyzed in 25 samples. nMI, the least consistent metric, is the most discriminant metric 

(about 1%). Interestingly, MCC is the most consistent and the third discriminant metric at the same time. The table also 

illustrates another important finding that all the metrics are highly discriminant (about 4%) with ACC. Note that UDisc, 

when indicated with two metrics, is a directional meta-metrics (i.e. the violation instances of 𝑈𝐷𝑖𝑠𝑐𝑀1→ 𝑀2
and 

𝑈𝐷𝑖𝑠𝑐𝑀2→ 𝑀1
 are different (though the values might be equal) as opposed to symmetric 𝑈𝐶𝑜𝑛𝑠𝑀1↔𝑀2

 meta-metric. 

Table 9 shows the overall results of the Stage-2 benchmarking along with the metrics’ ranks. Stage-2 differentiates the 

positions of the benchmarked metrics, some of which are equal in the previous stages (e.g., MCC and CK have the same 

ranks). According to overall meta-metrics benchmarking, MCC is ranked the first, whereas nMI and PPV are ranked the 

last. 

Table 9 Experiment-1: Stage-2 benchmarking results for 13 performance metrics according to the seven proposed meta-

metrics 

Meta-Metrics / Metrics  MCC BACC INFORM MARK CK ACC TNR TPR G F1 NPV nMI PPV 

UBMcor 1 3 3 3 3 1 9 9 7 8 9 13 9 

UIMBucor 1 1 1 1 9 1 1 1 8 11 12 10 12 

UDist 5 2 3 3 6 13 8 8 7 8 8 1 8 

UOSmo 4 1 1 1 4 13 7 7 6 11 7 12 7 

UMono 1 9 9 9 12 1 1 1 1 1 1 13 1 

UCons 1 1 1 4 4 7 11 9 6 8 12 13 9 

UDisc 2 2 2 2 2 7 7 11 13 7 7 1 11 

Overall Stage-2 Rank 1 2 3 4 5 6 7 8 9 10 11 12 12 

4  Experiment-1 results and findings 

Table 10 summarizes and combines Experiment-1 benchmark results from the two benchmark stages and gives a finalized 

ranking of the 13 performance metrics reviewed. The stages are weighted according to the complexity and coverage. We 

set the weights, as shown in Table 10, putting more weight in the meta-metrics stage. 

The weights are heuristically determined with more value on Stage-2. Stage-1 summarizes each metric-space or 

characteristics of metric equations, whereas Stage-2 addresses specific critical robustness issues covering whole metric-

spaces. Taking equal weights can lead to rank a metric at the top, even having small meta-metric values. Nevertheless, 

MCC and BACC are still the first and second robust metric if the weights are equal (the ranks are also the same for the 

remaining five metrics, namely MARK, TPR, NPV, PPV, and nMI). Taking equal weights diminishes the distinguishing 

rank between BACC – CK (2nd – 4th)  and G – F1 (7th – 8th). 

 

Table 10 The ranking of two benchmark stages and final benchmarking ranking results of Experiment-1 

Benchmark Stages Stage Elements Weight MCC BACC INFORM CK MARK ACC G F1 TNR TPR NPV PPV nMI 

Stage-1: Mathematical evaluation 9 of 11 criteria 1 1 4 4 1 4 8 4 3 9 9 9 9 13 

Stage-2: Meta-metrics Seven meta-metrics 2 1 2 3 5 4 6 9 10 7 8 11 12 12 

 Final Benchmarking Ranking: 1 2 3 4 5 6 7 8 8 10 11 12 13 

 

The followings are the main findings: 

• MCC is the most robust performance metric. 

• BACC is the second-best metric. CK could be interpreted as the third-best because BACC and INFORM are very 

similar to each other (UCons = 1, UDisc = 0). 

• MCC is also better than CK in other aspects not included in benchmarking (see informative criteria in Table 1). 

• Highly recommended or conventionally used metrics such as TPR, PPV, ACC, G, and F1 exhibit robustness issues 

and should be used cautiously if used alone in performance evaluation. 

• The recommended nMI metric is also not proper to handle different cases encountered in a classification problem. 
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Some of the notable observations were obtained from the benchmarking: 

In Stage-1: 

i) Only INFORM, MARK, and BACC have the same mean, median, and mode values. ACC and MCC have very 

close central tendency measures (see Fig. 3). 

ii) The metrics have a symmetric metric-space except for G, nMI, F1, and CK. 

iii) G and F1 metric-spaces exhibit an accumulation at zero. 

iv) Only MCC, CK, F1, and nMI cover both outcome (OP, ON) and class measures (P, N). 

v) TPR, PPV, TNR, and NPV are single-class-only metrics (i.e. P-only or N-only). 

vi) All metrics are insensitive to one or more base measures except nMI, CK, and MCC. 

vii) nMI and F1 exhibit some inconsistencies in swapping of base measures. 

viii) nMI has a highly right-skewed metric-space. 

In Stage-2: 

i) ACC, INFORM, MARK, BACC, and MCC have a high correlation with individual base measures, whereas the 

others have either some imbalances or no associations. 

ii) nMI does not exhibit any relationship with base measures. 

iii) PPV, NPV, and F1 are moderately; G, CK, and nMI are slightly correlated with class imbalance (i.e. changing 

class ratios either increase or decrease the performance without changing the model). 

iv) TPR, TNR, PPV, NPV, ACC, and F1 do not exhibit granular output coverage in metric-spaces (see Fig. 5). 

v) nMI and ACC do not output smoothly in metric-spaces. 

vi) All metrics are monotonic except INFORM, MARK, BACC, CK, and nMI. CK has a minor, and nMI has 

numerous monotonicity violations. 

vii) BACC, INFORM, and MCC are the most consistent metrics among all the metrics. 

viii) INFORM and BACC are the only metrics that are entirely consistent with each other. 

ix) nMI is the least consistent and the most discriminating metric. 

x) G is the least discriminant metric. 

The robustness issues affect performance evaluation of multi-class classification. For example, macro-averaged F1 (shortly 

macro-F1) and micro-averaged F1 (micro-F1) are based on F1 with 8th robustness ranking. Macro-F1 is the arithmetic 

mean of F1s calculated for each class, whereas micro-F1 is the additive calculation of F1 by counting the total number of 

true class, false all-the-other class, and false class per each class, which are similar to binary TP, FN, and FP, respectively. 

These metrics commonly used in multi-class classification are apart from other metrics specific to multi-class, such as 

Hamming loss [29]. 

5  Evaluation of the proposed benchmarking method with the literature 

We compared our benchmarking method with the other methods in the literature threefold. We first compared our 

methodology with the existing metrics evaluation methods. In the second step, we compared the evaluation strategies of 

the studies proposing new performance metrics. Finally, we re-tested BenchMetrics on recently proposed metrics and 

compared our results with their findings. 

5.1  Comparison of BenchMetrics with the existing metrics evaluation methods 

Table 11 gives details about the methods designed for metric comparisons in the literature, summarizes their limitations, 

and compares them with our benchmarking method. First of all, the compared studies examined only a few metrics. Second, 

while some focused on basic behaviors of performance metrics (e.g., extreme cases such as comparing two classifiers’ 

results with swapped confusion matrix), the other studies worked on experimental classifications corresponding to only a 

minimal part of metric-spaces and showed similarities from a pure perspective without using an explicit ranking.  
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Table 11 Comparison of our benchmarking method with the existing metrics evaluation methods 

Compared Metrics, 

Year, Study, Conclusion Evaluation Method 

Notes: Limitation of the Studies and the Comparison Results 

(OCC stands for “Our Corresponding Criteria”) 

 

ACC and AUCROC, 

2005, [14] 

AUCROC is recommended 

instead of ACC. 

The simulated classifiers' performances applied on balanced and 

imbalanced synthetic datasets and three classifiers applied on 18 

real-world datasets (with 61 <= Sn <= 8.124) are calculated in 

terms of ACC and AUCROC, and each paired metric value are 

compared for consistency and discriminancy. 

1) Assessing the consistency and discriminancy among the compared metrics does 

not impose a superiority, especially in paired comparisons. For example, 

consistency between CK and ACC is meaningful only if both of the metrics are 

robust. Likewise, if either one or both metrics are not robust, then the 

discriminancies could not be interpreted. 

2) Our benchmark includes a large number of metrics; thus, the conclusions are 

more comprehensive. 

3) Our benchmark also indicates that CK is better than ACC, in line with this study. 

OCC: UCons/UDisc 

A similar method is used to measure the consistency and discriminancy among the 

metrics. 

CK and ACC, 2008, 

[30] 

CK is recommended 

instead of ACC. 

The consistency and discriminancy are compared within “the 

desired region of operation” only (i.e. where TPR >= 0.5 and FPR 

<= 0.02). This is because the calculation of consistency and 

discriminancy degree has time and calculation costs, as defined 

in the above study. 

BACC, ACC, F1, 

TNR, TPR, and PPV, 

2006, [4] 

TNR and BACC are more 

appropriate metrics 

concerning the variance or 

invariance of changes in 

confusion matrix elements. 

Checking whether the performance output depends on the 

following changes in confusion matrix: 1) exchange TP with TN 

and FN with FP 2) change only in TN 3) change only in FP, and 

4) scale TP and FP along with TN and FN. 

4) We reformulate those four changes to fit the classification performance 

evaluation context and make the assessments more comprehensible. 

5) Our benchmark shows that MCC and CK are the most robust metrics from the 

corresponding three criteria. But, TNR and BACC have the same inconsistencies 

with TPR, PPV, and ACC. 

OCC: 1) Invariant to class-and-outcome swaps (Criterion-6); 2 & 3) Base measure 

coverage (Criterion-3); 4) Outcome/class coverage (Criterion-1) 

ACC, G, F1, FPR, 

FNR, NPV, PPV, 

AUCROC, and 

AUC-PR, 2009, [31] 

Instead of comparing and 

rankings metrics, the study 

groups the compared 

metrics into two to four 

similar groups. 

The performances of two decision tree classifiers applied on 35 

real-world datasets with 200 <= Sn <= 20.000 and 65% < PREV 

< 99% based on different decision thresholds (0 < t < 1, default: 

0.5) are calculated in terms of the compared nine metrics. The 

relations of the metric values are compared for 350 classifier-

dataset runs in total: Comparison-1: Via correlations; 

Comparison-2: Via factor analysis (analyzing correlated metric 

values (observed variables) in terms of a small number of factors 

(unobserved variables). 

6) Examining performance metrics based on a number of real-world datasets 

covers limited prevalence and metric-space cases. For example, in our 

benchmarking, there are 2,667,126 base-measure permutations for Sn = 250. 

Whereas, for example, the 350 cases correspond to only 0.013 % of all possible 

permutations. Thus, correlations and factors may not be representative. 

7) The comparisons simply show similar metrics that are redundant when they are 

used together. They do not sufficiently dictate a proper metric and do not reveal 

any robustness issues. For example, G and F1 are found similar in factor analysis, 

whereas in our benchmarking, G is slightly more robust in general than F1. 

8) The comparisons are limited as they are reliant on the performance of two 

decision tree classifiers.  

OCC: UBMcor, UIMBucor, UMono, UCons/UDisc 

INFORM, ACC, G, 

and F1, 2002, [32] 

F1 is the recommended 

metric. 

They constructed performance trend graphics for different TPR, 

PPV, and PREV variations and observed whether the 

performances increase according to PREV. 

9) Both techniques require visual inspection and manual interpretation and are not 

measurable as in our benchmark.  

10) For the former study, our benchmark shows that INFORM is better among the 

compared four metrics. 

11) For the latter study, MCC is more robust and in line with our benchmark, 

whereas F1 has robustness issues in our corresponding criteria. 

OCC: UIMBucor, UCons (with TPR and PPV), and UCons (with TPR and TNR) 

MCC, BACC, ACC, 

F1, TNR, and PPV, 

2018, [3] 

MCC and F1 exhibit a more 

“realistic” estimation of 

classification performance. 

They constructed performance trends graphics for different TPR 

and TNR variations and inverse cumulative distribution function 

plots per balanced and imbalanced datasets. 
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Nevertheless, we addressed the proposed comparison techniques in BenchMetrics in a formal and easy to 

understand manner with measurable and comparable outputs. We improved the existing metric comparison 

approaches either by extending them or defining them in a classification performance context.  

5.2  Comparison of BenchMetrics with the methods which were used to evaluate new metrics 

Table 12 shows the recently proposed performance metrics and how they were compared with the other existing 

literature metrics. 

 

Table 12 Comparison of our approach with the methods which were used to evaluate new metrics 

The Study, Proposed New Metric, and its Description Notes and Validation of the New Metric / 

Our Corresponding Criteria (OCC) 

[33] SAR (an abbreviation of Squared error, Accuracy, 

and ROC area) 

 

𝑆𝐴𝑅 =
𝐴𝐶𝐶 + 𝐴𝑈𝐶𝑅𝑂𝐶 + (1 − 𝑅𝑀𝑆)

3
 

 

SAR combines Accuracy, Area Under ROC Curve, and 

Squared Error into one measure. 

AUCROC and RMS (root mean square) are different from all the metrics 

summarizing base measures like ACC. RMS is for regression problems 

instead of classification. 

 

The proposed metric is validated via correlation analysis. 

 

OCC: UCons/UDisc(a) 

[5] Optimized Precision (OACC): 

 

𝑂𝐴𝐶𝐶 = 𝐴𝐶𝐶 −
|𝑇𝑃𝑅 − 𝑇𝑁𝑅|

𝑇𝑃𝑅 + 𝑇𝑁𝑅
 

 

OACC reduces the sub-optimal performance 

measurement of ACC due to the skewed datasets by 

adding a heuristic correcting factor that minimizes TPR 

and TNR difference while maximizing their totals. 

The proposed metric is validated by comparing ACC and OACC outputs 

with class balanced and highly-imbalanced synthetic datasets (SKEWs 

are 1:1 and 1:9) along with a single real-world dataset (human DNA 

sequences). 

They inspected graphics showing the metrics’ variance for theoretical TPR 

and TNR ranges using 𝐴𝐶𝐶 = 𝑇𝑃𝑅 ⋅ 𝑁 + 𝑇𝑁𝑅 ⋅ 𝑃 equations.  

See “note 9” in Table 11 for comparison. 

 

OCC: UIMBucor 

[34] AUCROC:ACC 

 

𝐴𝑈𝐶𝑅𝑂𝐶: 𝐴𝐶𝐶

= {
𝐴𝑈𝐶𝑅𝑂𝐶, 𝐴𝑈𝐶-𝑅𝑂𝐶 pairs are different

𝐴𝐶𝐶, pairs are the same
 

 

AUCROC:ACC is a two-staged measure to enhance 

metric output differentiation. 

The proposed metric is validated by examining the new metric's 

correlations with AUCROC and ACC separately, then comparing it with 

the best RMS values (AUCROC:ACC is positively correlated with RMS). 

 

See “note 1” in Table 11 for comparison. 

 

OCC: UCons/UDisc(a) 

[9] Standardized Relative Performance Metric (SRPM) 

 

𝑆𝑅𝑃𝑀𝑖 =
𝑅𝑃𝑀𝑖 − min(𝑅𝑃𝑀𝑖)

max(𝑅𝑃𝑀𝑖) − min(𝑅𝑃𝑀𝑖)
 

 

𝑅𝑃𝑀𝑖 = ∑ 𝑝𝑗
∗𝑓𝑖𝑗

𝑛
𝑖=0  where n: number of factors, fij is the 

factor score of the ith instance on the jth factor, and p∗
j is 

the normalized proportion of the variance to the jth factor.  

Performances are calculated in different metrics (ACC, G, F1, NPV, PPV, 

AUCROC, AUCPR: Area-Under-Precision-Recall-Curve) for 12 ML 

models on 35 real datasets. Factor analysis is applied to the metric values. 

A relative metric value calculated with factor scores and normalized 

proportions of the eigenvalues is standardized into [0, 1] range for the 

given number of factors. The choice of the number of factors requires 

expertise. As an empirical study, their work results are limited to the scope 

of the chosen classifiers and performance metrics. 

 

OCC: UCons/UDisc(a) 

[6] Index of Balanced Accuracy: 

 

𝐼𝐵𝐴𝛼(𝐺) = (1 + 𝛼(𝑇𝑃𝑅 − 𝑇𝑁𝑅))𝐺 

 

IBA is a parametric metric like OACC that adjusts a 

known metric (here G), taking the difference between 

TPR and TNR. 

1. The correlations of the new metric with TPR, TNR, ACC, and G are 

evaluated concerning class imbalance (ACC and G), and class focuses 

(TPR and TNR) 

2. Invariance properties are used to evaluate the metric. 

 

See “notes 4 and 7” in Table 11 for comparison. 

 

OCC: UCons/UDisc(a), Criterion-6, Criterion-3, and Criterion-1 

(a) The UCons and UDisc meta-metrics can be used to see the similarities and differences of the metrics comprising the composite 

new metrics. For example, UCons and UDisc meta-metric values for TPR, TNR, and G metrics can give the following insights in a 

composite new metric IBAɑ(G): TPR – TNR relations: I) UConsTPR↔TNR = 0.53, II) UDiscTPR➝TNR = UDiscTNR➝TPR = 0.29 

G – TPR and TNR relations: III) UConsG↔TPR = UConsG↔TNR = 0.77, IV) UDiscG➝TPR = UDiscG➝TNR = 0.19, V) UDiscTPR➝G = 

UDiscTNR➝G = 0.29. Because TPR and TNR together are a factor of IBAɑ(G) (i.e. TPR – TNR), we expect that the directional 

discriminancy meta-metrics between TPR and TNR (relation II) as well as between G and each of TPR/TNR (relations IV and V) the 

same. Otherwise, two contradicting terms are to be subtracting. Having consistency meta-metrics that are not close to 1 (relations I 

and III) can be interpreted as the composite metric differentiates from the dependent metrics (if the consistencies are close to 1, then 

there is no need to define another metric). 
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The first three of the proposed metrics are intended to minimize the class imbalance effect of ACC. 

5.3  Experiment-2 results and findings 

In Experiment-2, we tested BenchMetrics on 13 performance metrics with additional two recently proposed 

metrics namely Optimized Precision (OACC) and Index of Balanced Accuracy for G (IBAɑ(G)). To avoid repeated 

information presented for Experiment-1, we specifically focused on: 

• whether proposed metrics provide an improvement compared to their base metrics (ACC for OACC and 

G for IBAɑ(G)) and 

• comparison with MCC as the most robust metric in Experiment-1. 

Table 13 lists the details of the Stage-1 benchmarking results of Experiment-2 (like Table 1 of Experiment-1 

presented for the benchmarking of 13 performance metrics). The various positive or negative robustness issues 

(underlined bold texts depict negative ones) are revealed. Note that ɑ coefficient in 𝐼𝐵𝐴𝛼(𝐺) = (1 +

𝛼(𝑇𝑃𝑅 − 𝑇𝑁𝑅)) is taken as 0.05 as suggested by [6]. 

 

Table 13 Experiment-2: Benchmarking Stage-1 results (Sn = 50) for the two new proposed metrics. 

Stage-1 Criteria ACC OACC G IBAɑ(G)  MCC 

1 Outcome/class coverage None Class-only(1) Class-only Class-only(2) Yes 

2 Class coverage (P and N) None Yes(1) Yes Yes(2) Yes 

3 Base Measure Coverage TP, TN TP, TN TP, TN TP, TN Yes 

4 Variant to class swap Yes Yes Yes Yes Yes 

5 Variant to outcome swap Yes Yes Yes Yes Yes 

6 Invariant to class-and-outcome swaps Yes Yes Yes No Yes 

7 Undefined (NaN) count 0 3Sn+1 2(Sn+1) 2(Sn+1) 4Sn 

8 Central tendencies (mean-median difference) 𝐌̅ = 𝐌̃ ≈ 𝐌𝐨 𝐌̅ ≠ 𝐌̃ ≠ 𝐌𝐨 𝐌̅ ≈ 𝐌̃ ≠ 𝐌𝐨 𝐌̅ ≈ 𝐌̃ ≠ 𝐌𝐨 𝐌̅ ≈ 𝐌̃ = 𝐌𝐨 

Other Informative Criteria 

9 Standard Deviation 0.23 0.23 0.26 0.26 0.21 

10 Skewness Symmetric 
Slightly 

negative(3,4) 

Slightly 

positive(5) 

Slightly 

positive(5) 
Symmetric 

11 Kurtosis Platykurtic(6) Platykurtic(6) Platykurtic(6) Platykurtic(6) Platykurtic(6) 

(1) OACC = f(TP, TN, P, N, TC, Sn), (2) IBAɑ(G) = f(TP, TN, P, N), (3) Left-skewed, (4) Distorting symmetry, (5) Right-skewed, 

(6) Thin-tailed 

 

The followings are the summary of the findings according to focus expressed above: 

i. OACC improved ACC on outcome/class and class coverages, but robustness issues appeared in undefined 

metric outputs and mean-median difference. It also distorts symmetry observed in ACC. 

ii. IBAɑ(G) has no improvement on G; it is not invariant in class-and-outcome swaps, which is only seen in 

F1 in the benchmarked metrics, as seen in Table 1. 

iii. Evaluating the eight criteria in Stage-1, the robustness of OACC and IBAɑ(G) is almost identical. Only 

Criterion-6 (invariant to class-and-outcome swaps) and Criterion-8 (central tendencies) are different 

mutually. 

iv. MCC is more robust than the new metrics. 

Table 14 shows the results of the Stage-2 benchmark of Experiment-2 according to the first five meta-metrics. Up 

arrows depict that a new metric improves the dependent metric (i.e. IBAɑ(G) improves G or OACC improves 

ACC). Down arrows represent degradation. The following is a summary of the findings: 

i. OACC improves ACC on distinctness and output smoothness but decreases the robustness for base 

measure correlations, imbalance uncorrelation, and monotonicity in a contradictory manner. 

ii. IBAɑ(G) improved G by increasing distinctness and output smoothness (no significant improvement 

for imbalance uncorrelation). 
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iii. IBAɑ(G) is more robust than OACC, considering the base measure correlations, distinctness, and 

monotonicity. 

iv. MCC is more robust than the new metrics as in Stage-1. 

Table 15 lists the remaining meta-metrics in Stage-2, namely UCons and UDisc. We summarized them per each 

recently proposed metric instead of giving each pairwise meta-metric values among the metrics as in Table 7 and 

Table 8. Bold values depict higher meta-metric summary values. For example, the mean consistency of IBAɑ(G) 

with the 13 benchmarked metrics (0.834) is higher than the mean consistency of ACC (0.773). 

 

Table 14 Experiment-2: Benchmarking Stage-2 results (Sn = 50) for the two new proposed metrics in the literature 

(excluding the UCons and UDisc meta-metrics). Metrics are sorted in descending order per meta-metrics from the 

most robust one to the least. Osmo is the smoothness value. 

UBMcor UIMBucor UDist UMono Osmo 

MCC 0.78 MCC 1 IBAɑ(G) ▲ 0.8 MCC 1 INFORM 3.22 

ACC 0.78 INFORM 1 OACC ▲ 0.412 ACC 1 MARK 3.22 

INFORM 0.77 MARK 1 nMI 0.382 G 1 BACC 3.22 

MARK 0.77 BACC 1 BACC 0.333 IBAɑ(G) 1 OACC ▲ 4.91 

BACC 0.77 ACC 1 INFORM 0.332 F1 1 MCC 5.26 

CK 0.77 TPR 1 MARK 0.332 TPR 1 CK 5.28 

G 0.75 TNR 1 MCC 0.232 TNR 1 
IBAɑ(G) 

▲ 
6.44 

IBAɑ(G) 0.75 IBAɑ(G) ≈ 0.98 CK 0.202 PPV 1 G 6.98 

OACC ▼ 0.73  G 0.97 G 0.196 NPV 1 TPR 7.82 

F1 0.72 OACC ▼ 0.97 TPR 0.033 INFORM 0.998 TNR 7.82 

TPR 0.69 CK 0.96 TNR 0.033 MARK 0.998 PPV 7.82 

PPV 0.69 nMI 0.91 PPV 0.033 BACC 0.998 NPV 7.82 

TNR 0.69 F1 0.64 NPV 0.033 CK 0.948 F1 9.15 

NPV 0.69 PPV 0.55 F1 0.033 OACC ▼ 0.76 nMI 19.7 

nMI 0.5 NPV 0.55 ACC 0.002 nMI 0.517 ACC 21.62 

 

Table 15 Summary of the pairwise UCons and UDisc meta-metrics in Experiment-2 per OACC and IBAɑ(G) with 

the 13 benchmarked metrics (minimum, mean, standard deviation (SD), and maximum values) for Stage-2 with 

Sn = 20 

New Metric(s) 

vs. Reviewed 

Metrics 

Consistencies / 

Discriminancies with 

each reviewed metric Min Mean ± SD Max 

OACC {UConsOACC↔M1, …, M13} 0.511 0.773 ± 0.090 0.899 

 {UDiscOACC↔M1, …, M13} 0.002 0.022 ± 0.020 0.052 

 {UDiscM1, …, M13↔OACC} 0 0.003 ± 0.001 0.004 

IBAɑ(G) {UConsIBAɑG➝M1, …, M13} 0.551 0.834 ± 0.110 0.992 

 {UDiscIBAɑG➝M1, …, M13} 0.002 0.014 ± 0.020 0.051 

 {UDiscM1, …, M13➝IBAɑG} 0 0.042 ± 0.014 0.053 

OACC vs. 

IBAɑ(G) 

Consistency / 

Discrimininancy 

between two new metrics Meta-metric value 

 UConsIBAɑG↔OACC 0.898 

 UDiscIBAɑG➝OACC 0.001 

 UDiscOACC➝IBAɑG 0.046 
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Among the paired metric values in metric-space, OACC and IBAɑ(G) are 89.8% consistent. However, IBAɑ(G) is 

more consistent with the 13 benchmarked metrics on average, whereas OACC is more discriminant than both the 

benchmarked metrics (2.2%) and IBAɑ(G) (4.6%). Briefly, IBAɑ(G) is more consistent, and OACC is more 

discriminant. 

Combining Stage-1 and Stage-2, IBAɑ(G) is more robust than OACC. However, neither of them is as robust as 

MCC. Both Experiment-1 and Experiment-2 show that BenchMetrics can be used to analyze and compare the 

robustness of any proposed performance metrics derived from a confusion matrix for single-threshold ML models 

or crisp binary-classifiers. The findings of BenchMetrics for the metrics comprising graphical performance metrics 

are directly valid, namely TPRs vs. TNRs for AUCROC and TPRs vs. PPVs for AUCPR, respectively. Section 7 

discusses the robustness of the instruments based on the probabilistic interpretation of classification error or loss. 

6  Evaluation of meta-metrics 

This section demonstrates the usability of meta-metrics in assessing the robustness of metrics via an approach 

different from those evaluated in Table 11 and Table 12, such as comparing metric values of some ML classifiers 

tested on real-world datasets and manual analysis of metric graphics. This approach is to analyze and compare 

metric values calculated for the controlled synthetic classifiers. Evaluating metrics via ML classifiers such as 

Support Vector Machines or Decision Trees is not straightforward or conclusive. They bring extra factors to 

consider, such as the randomness of models, dataset dependency, different tuning of parameters, etc. Synthetic 

classifiers are consistent and controlled. Therefore, they successfully reveal the pure behavior of the metrics. 

To the best of our knowledge, only Boughorbel et al. [7] used synthetic classifiers to compare ACC, F1, MCC, 

and AUCROC. They examined the classifiers defined for PREV < 0.5 values only and interpreted the relationship 

between metrics and prevalence via the graphics. In this evaluation, we tested BenchMetrics to evaluate the metrics 

on those synthetic classifiers to see whether the meta-metrics give insights about the metrics’ robustness without 

manual interpretation. 

Extending Boughorbel’s classifiers, we covered the full PREV range and clearly defined the metric-class-

imbalance relation via the proposed UIMBucor meta-metric. The specifications of the synthetic classifiers are as 

follows: 

• SC-1 (Stratified Random): Stratified random classifier makes a random prediction (i.e. independent from 

the input instance) by taking into consideration the test dataset’s class distribution (i.e. the probability of 

predicting as positive is PREV). 

• SC-2 (Random): Simple random classifier makes a random prediction independent from the test dataset’s 

class distribution (i.e. the probability of predicting as positive is 0.5 that is independent of PREV). 

Fig. 6 shows each synthetic classifier’s performances in terms of thirteen metrics calculated for 41 synthetic 

datasets with a sample size of 10,000. The datasets’ class ratios are generated per PREV level from 0 to 1 in 0.025 

increments, making various binary examples with known labels. For example, the first dataset (PREV1 = 0) 

consists of negative examples only (10,000 negatives); the second one (PREV2 = 0.025) has 250 positives and 

9,750 negatives, and so on. 

Each synthetic classifier predicts each example in the datasets according to the given specification above. The sum 

of the results of those predictions yields the classifiers’ performance per dataset in terms of TP, FP, FN, and TN 

that makes an array of 41 base measures (BM, not a base-measure permutation: BMSn). The performances are 

calculated per synthetic classifier for 41 datasets in terms of thirteen metrics (yielding the corresponding array of 

metric values, e.g., ACC, not a metric-space). 

As shown in UIMBucor values (the bold-underlined ones: F1, NPV, PPV, TNR, and TPR in SC-1 and F1, PPV, 

and NPV in SC-2) in Fig. 6 (c) and (d), UIMBucor meta-metric successfully identifies the metrics directly affected 

by class imbalance that is also observed in the graphs. Note that the other six meta-metrics are not included in this 

evaluation because they show the entire metric-space aggregated statistics. 

The overall results of Stage-2 BenchMetrics (including all seven meta-metrics) tested on SC-1 and SC-2 also 

support MCC’s robustness. This evaluation shows that meta-metrics does not require manual analysis and give 

measurable insights even within a small section of permutations in overall metric-spaces. 
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7  Robustness of graphical and probabilistic classification error/loss instruments 

As described above, BenchMetrics is proposed to assess the metrics derived from a confusion matrix for single-

threshold ML models or crisp binary-classifiers. Although graphical performance metrics are not based on a single 

instance of a confusion matrix, they are calculated by varying a decision threshold (i.e. full operating range of a 

classifier) for different metric pairs in a specific binary-classification application [35]. Therefore, BenchMetrics is 

also valuable for graphical performance metrics by assessing robustness through the dependent metrics (TPRs vs. 

TNRs for AUCROC and TPRs vs. PPVs for AUCPR). 

 

  

(a) SC-1: Stratified random performance metric values (b) SC-2: Random performance metric values 

Metrics UIMBucor  

BACC 0.89 

INFORM 0.89 

MARK 0.89 

nMI 0.64 

CK 0.80 

MCC 0.80 

G 0 

TNR 0 

TPR 0 

ACC 0 

F1 0 

NPV 0 

PPV 0 
 

Metrics UIMBucor  

nMI 0.84 

TPR 0.89 

BACC 0.85 

G 0.85 

INFORM 0.85 

MCC 0.64 

CK 0.48 

MARK 0.48 

TNR 0.43 

ACC 0.38 

F1 0 

NPV 0 

PPV 0 
 

(c) UIMBucor for SC-1 (d) UIMBucor for SC-2 

Fig. 6 Classification performance metrics’ trends for the synthetic classifiers on datasets with varying PREV and 

corresponding UIMBucor meta-metric value distributions. 

8 Probabilistic error/loss instruments and not-applicability of BenchMetrics 

Like graphical-based instruments, probabilistic error/loss instruments, such as MSE or LogLoss, do not depend on 

a confusion matrix. They summarize the deviation from the true probability or prediction uncertainty. Although 

they are preferred in regression problems rather than classification problems or chosen for multi-class 

classification rather than binary, they can be reported in binary classification (e.g., neural network classification 

models), usually with one or more confusion matrix based metrics, as a “reliability metric” [8, 35] instead of a 

“performance metric”. 
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Contrary to zero-one loss metrics (e.g., MCR, FPR, FNR, FDR, and FOR), probabilistic error/loss instruments 

evaluate the performance error of scoring or non-crisp classifiers that label instances with a reported or attached 

belief value (score, probability or likelihood) according to a decision boundary. For example, instead of labeling 

an instance as positive (one) or negative (zero) absolutely (also known as “hard label”), a classifier model with a 

Θ = 0.50 internal decision-boundary value (the right side is for positive labels, the left side is for negative ones) in 

[0, 1] interval can label a positive instance (ci = 1) as positive correctly with a pi = 0.85 score (also known as “soft 

label”). It labels another instance (cj = 0) as negative correctly with a pj = 0.40 score. Hence, we can interpret the 

probabilistic classification error as a distance function for those instances such that the former labeling is more 

probable than the latter (|0.85 – 0.50| = 0.35 > 0.10 = |0.40 – 0.50| where Θ = 0.5). 

 

BenchMetrics could not be applied to assess probabilistic performance instruments’ robustness because it mainly 

analyzes the performance metric-spaces representing all the possible base-measure permutations. One permutation 

would be TP = 10, FP = 0, FN = 0, TN = 10 for Sn = 20. In this best-case scenario, a probabilistic error/loss metric, 

such as MAE, could be any value in [0, 0.5)3. In other permutations, the possible range is in [0, 1]. Because there 

is no relation between classification results in terms of base measures with any error/loss values, BenchMetrics’ 

methods on probabilistic instruments adding extra dimension to the metric-space are not applicable. 

9  Discussion and implications 

The base-measure permutations provide a pseudo-universal metric-space for analyzing and comparing metrics’ 

outcomes without missing any case contrary to the studies in the literature, investigating limited cases. The 

permutation vector and metric-space size increase exponentially with the classification dataset size (286 

permutations for Sn = 10 and 2,667,126 for Sn = 250). Increasing Sn only increases the granularity of the 

transitions among permutations (the minimum change of base measures is always ±1). The distribution and 

descriptive statistics remain almost the same, as shown in metric-space density graphs in Fig. 3. UBMcor and 

UIMBucor benchmarking meta-metrics are not affected by Sn. For the remaining five benchmarking meta-metrics, 

yielding different but consistent values for other Sn, we averaged the values for nine Sn values between 25 and 

250, which corresponds to 3,276 and 2,667,126 permutations, to calculate the final meta-metric value. Although 

the granularities exhibited by those permutations are sufficient to conduct the proposed analysis, one practical 

barrier was the long calculation time of UCons and UDisc meta-metrics (about 22 hours to calculate a metric with 

twelve other metrics). These meta-metrics compare every pair of the reviewed metrics. The time constraint is also 

valid for creating the base-measure permutations. However, we optimized the basic algorithm to generate the base-

measures according to our Definition 1. Hence, the improvement of generating and calculating base-measure 

permutations and metric-spaces and calculating meta-metrics for larger sizes or conducting the benchmark for 

larger sizes, possibly in a high computation power platform is a future research.  

Contradictory, it could be argued that the benchmarking highlights subtle issues in some metrics (e.g., 

monotonicity violations in CK) that cannot be seen in practice or a well-prepared classification study. In our 

opinion, the issues re-summarized in Section 4 cannot be ignored as they may arise in several areas such as online 

machine learning classifications, decision-making applications, including “what if” scenarios, and artificial 

general intelligence in the future where the classification performance possibilities are diverse. 

The theoretical implications of this study are (1) to define objective and measurable criteria for metrics, (2) to 

establish a well-founded testing methodology for their comparison, and the practical implications are (1) to 

increase awareness regarding the problematic metrics and their specific weaknesses, and (2) to support researchers 

in terms of selecting a robust metrics for their classification application domain in addition to the conventional 

ones used in the field when necessary. A further implication of this transition into robust metrics is the possibility 

that different ML approaches in the literature may come to prominence in specific domains requiring using those 

metrics as a standard practice. 

BenchMetrics is designed to produce scaled scores for ranking and comparison and implemented as an API 

(Application Programming Interface) to prepare the related data, calculate the scores, and provide the test results. 

Hence, other researchers can extend it by including new criteria. Additional statistical analysis, for example, could 

contribute to revealing informative characteristics of the distributions (besides “skewness” and “kurtosis” in 

                                                           

3 For ten negative samples (e.g., i = 1, …, 10): ci = 0 and example pi = 0.49 then | ci – pi | = 0.49. For remaining 

ten positive samples (e.g., i = 11, …, 20) : ci = 1 and example pi = 0.51 then | ci – pi | = 0.49. Hence, MAE = 0.49. 
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Section 3.2.3) such as modality of the probability distributions (i.e. multimodal distributions having two or more 

modes or peaks) [36]. 

As an up-to-date improvement in scientific studies, initiatives such as OpenAIRE by the European Union and 

Zenodo by CERN aim to encourage common, responsible, and reproducible open research approaches where 

research data become available to all researchers. Inline with their objectives, this study aims to develop a common 

standard for evaluating performance since scientific progress cannot be achieved unless objective comparison 

methodologies are determined clearly and followed by all researchers. 

We expect that the metrics’ rankings and their robustness issues revealed will guide researchers to evaluate 

classification performances straightforwardly by choosing the right metrics and further contributing toward 

responsible and reproducible open research by establishing the common best practices in performance evaluation 

and reporting. As several ML studies are conducted, and the industry starts to develop and use the classifiers 

practically in many areas, using precise and concise instruments would become a precondition for evaluating 

performances and claiming an improvement. Finally, we plan to generalize the proposed BenchMetrics method 

into multi-class performance evaluation metrics as a future study. 

10  Conclusions 

This study examined binary-classification performance metrics’ behaviors from a broader perspective to reveal 

the problematic issues and showed the most robust metric. A new comprehensive method called BenchMetrics is 

proposed to evaluate and compare performance metrics. Contrary to the existing approaches, our method 

comprising two stages presents new concepts with formal definitions such as metric-space, meta-metrics (metrics 

about performance metrics), base-measure permutations, and variance/invariance in base-measure swapping to 

analyze the metrics. BenchMetrics spots the weak and robust issues of individual metrics, metric pairs, and a group 

of metrics in an objective and comparable manner. BenchMetrics Stage-1 comprises eight criteria to evaluate the 

metrics from a mathematical perspective, and Stage-2 presents seven novel meta-metrics to analyze a metric-space 

based on different robustness requirements. All criteria and meta-metrics yield a robustness value normalized into 

[0, 1] interval to enable comparison of metrics per criteria or meta-metric as well as provide a ranking for the 

metrics per stage or an overall final benchmarking. 

BenchMetrics was tested on thirteen performance metrics that are commonly used or recommended in the literature 

(Experiment-1). To the best of our knowledge, this is the first time that such a wide range of metrics have been 

reviewed in this scope, and one metric has been suggested with substantial justification. BenchMetrics spotted 

specific cases where a metric behaves unexpectedly (e.g., yielding high-performance values in a higher number of 

false classifications or metric-space distribution anomalies clearly demonstrated in Fig. 5). For instance, TPR, 

ACC, nMI, F1, and CK exhibit significant robustness issues, which need to be taken into consideration if they 

needed to be used in an experiment. 

Lack of a systematic benchmarking methodology specifically brought a limitation for the researchers who propose 

new performance metrics. The previous techniques reveal only limited aspects of performance metrics, which have 

been already addressed with BenchMetrics. In this regard, we re-tested two recently proposed performance 

metrics, namely Optimized Precision (OACC) and Index of Balanced Accuracy (IBAɑ(G)), along with the 

previously benchmarked thirteen metrics (Experiment-2). This experiment showed limited improvements in these 

new metrics and conversely, introduced robustness issues unaddressed in the literature. Experiment-2 

benchmarking showed that MCC is still the most robust metric, including the recent ones. Future new metric 

propositions should exhibit more robustness from MCC when tested by BenchMetrics. MCC has been previously 

shown superior to numerous metrics in the literature [37]. Reporting MCC with conventional metrics (ACC, TPR, 

PPV, and F1) in recent research in some fields such as biology and bioinformatics (e.g., diagnose cancer diseases 

via ML-based classification) [38, 39] can be an indication of the trust to MCC as a robust metric. BenchMetrics 

offers a systematic and well-founded approach for metric choice in specific domains instead of heuristic reasoning. 

Finally, we demonstrated the effectiveness of meta-metrics via synthetic classifiers. Our method produces similar 

results mathematically to those synthetic classifiers which require visual interpretation on plots where marginal 

differences cannot be observed properly. Note that the developed online benchmarking open-source software 

library and an interactive platform to run BenchMetrics with example data/graphs are provided for the researchers 

who wish to see the details or conduct their benchmarks. 

In conclusion, this study proposes a new comprehensive benchmarking method to analyze the robustness of 

performance metrics and ranks 15 performance metrics in the literature. Researchers can use MCC as the most 
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robust metric for general objective purposes to be on the safe side. Otherwise, they can select a metric among 

others required or enforced by their domain of interest, considering the ranks and specific robustness issues 

revealed by the benchmark.  

Appendix A Developed online research tools and data 

• An online interactive BenchMetrics experimentation platform 

Platform: Code Ocean, Address: https://doi.org/10.24433/CO.1564477.v3  

• BenchMetrics open-source performance metrics benchmarking software library (API) 

Repository: GitHub, Address: https://github.com/gurol/benchmetrics 

• Binary-classification performance metric-spaces data 

Repository: Mendeley Data, Address: http://dx.doi.org/10.17632/64r4jr8c88.2 

• Binary-classification performance-metrics benchmarking data 

Repository: Mendeley Data, Address: http://dx.doi.org/10.17632/2g36672s5f.4 

  

https://doi.org/10.24433/CO.1564477.v3
https://github.com/gurol/benchmetrics
http://dx.doi.org/10.17632/64r4jr8c88.2
http://dx.doi.org/10.17632/2g36672s5f.4
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Appendix B Binary-classification performance instrument list 

Table 16 Performance measures and metrics (names, alternative names, abbreviations, and equations) 

Measure — Abbreviation Equation 

True Positive TP  

False Positive FP  

False Negative FN  

True Negative TN  

Positive P 𝑻𝑷 + 𝑭𝑵 

Negative N 𝑻𝑵 + 𝑭𝑷 

Outcome Positive OP 𝑻𝑷 + 𝑭𝑷 

Outcome Negative ON 𝑻𝑵 + 𝑭𝑵 

True Classification TC 𝑻𝑷 + 𝑻𝑵 

False Classification FC 𝑭𝑷 + 𝑭𝑵 

Sample Size Sn 

𝑷 + 𝑵 = 𝑶𝑷 + 𝑶𝑵 

= 𝑻𝑪 + 𝑭𝑪 

= 𝑻𝑷 + 𝑭𝑷 + 𝑭𝑵 + 𝑻𝑵 

Prevalence PREV 𝑷/𝑺𝒏 

Bias BIAS 𝑶𝑷/𝑺𝒏 

Cohen’s Kappa Chance CKc 

𝑷 ⋅ 𝑶𝑷 + 𝑵 ⋅ 𝑶𝑵

𝑺𝒏𝟐
=

𝑷𝑹𝑬𝑽 ⋅ 𝑩𝑰𝑨𝑺 +
(𝟏 − 𝑷𝑹𝑬𝑽) ⋅ (𝟏 − 𝑩𝑰𝑨𝑺)

 

Determinant DET 𝑻𝑷 ⋅ 𝑭𝑵 − 𝑭𝑷 ⋅ 𝑭𝑵 

Class Entropy HC 
− ∑

𝒄

𝑺𝒏
𝒍𝒐𝒈𝟐

𝒄

𝑺𝒏
𝒄=𝑷,𝑵

 

  
= − ∑ 𝒎 𝒍𝒐𝒈𝟐 𝒎

𝒎=𝑷𝑹𝑬𝑽,𝟏−𝑷𝑹𝑬𝑽

 

Outcome Entropy HO 
− ∑

𝒐

𝑺𝒏
𝒍𝒐𝒈𝟐

𝒐

𝑺𝒏
𝒐=𝑶𝑷,𝑶𝑵

 

  
− ∑ 𝒎 𝒍𝒐𝒈𝟐 𝒎

𝒎=𝑩𝑰𝑨𝑺,𝟏−𝑩𝑰𝑨𝑺

 

Metric — Abbreviation Equation 

True Positive Rate 

(recall, sensitivity, hit 

rate, recognition rate) 

TPR 𝑻𝑷/𝑷 

True Negative Rate 

(inverse recall, 

specificity) 

TNR 𝑻𝑵/𝑵 

Positive Predictive Value 

(precision, confidence)  
PPV 𝑻𝑷/𝑶𝑷 

Negative Predictive 

Value (inverse precision) 
NPV 𝑻𝑵/𝑶𝑵 

 

Metric — Abbreviation Equation 

Joint Entropy HOC 
− ∑

𝒐𝒄

𝑺𝒏
𝒍𝒐𝒈𝟐

𝒐𝒄

𝑺𝒏
𝒐𝒄=𝑻𝑷,𝑭𝑷,𝑭𝑵,𝑻𝑵

 

Mutual Information MI 

𝑻𝑷

𝑺𝒏
𝒍𝒐𝒈𝟐

𝑻𝑷 𝑺𝒏⁄

𝑷𝑹𝑬𝑽 ⋅ 𝑩𝑰𝑨𝑺
+ 

𝑭𝑷

𝑺𝒏
𝒍𝒐𝒈𝟐

𝑭𝑷 𝑺𝒏⁄

(𝟏 − 𝑷𝑹𝑬𝑽) ⋅ 𝑩𝑰𝑨𝑺
+ 

𝑭𝑵

𝑺𝒏
𝒍𝒐𝒈𝟐

𝑭𝑵 𝑺𝒏⁄

𝑷𝑹𝑬𝑽 ⋅ (𝟏 − 𝑩𝑰𝑨𝑺)
+ 

𝑻𝑵

𝑺𝒏
𝒍𝒐𝒈𝟐

𝑻𝑵 𝑺𝒏⁄

(𝟏 − 𝑷𝑹𝑬𝑽) ⋅ (𝟏 − 𝑩𝑰𝑨𝑺)
 

Accuracy (efficiency, 

rand index, fraction 

correct) 

ACC 𝑻𝑪/𝑺𝒏 

Misclassification Rate MCR 𝟏 − 𝑨𝑪𝑪 

Informedness (±) 
(Youden’s index, delta 

P’, Peirce skill score) 
INFORM 𝑇𝑃𝑅 + 𝑇𝑁𝑅 − 1  

Markedness (±) (delta 

P, Clayton skill score, 

predictive summary 

index) 

MARK 𝑃𝑃𝑉 + 𝑁𝑃𝑉 − 1  

Balanced Accuracy 
(strength) 

BACC 
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
=

𝑇𝑃 ⋅ 𝑁 + 𝑇𝑁 ⋅ 𝑃

2𝑃 ⋅ 𝑁
 

G-metric (G-mean, 

Fowlkes-Mallows index) 
G √𝑇𝑃𝑅 ⋅ 𝑇𝑁𝑅

2
= √𝑇𝑃 ⋅ 𝑇𝑁

𝑃 ⋅ 𝑁⁄
2

 

Normalized Mutual 

Info 
nMI 

𝑀𝐼
(𝐻𝐶 + 𝐻𝑂)/2⁄  

F-metric (F-score, F-

measure, positive 

specific agreement) 
F1 

2𝑇𝑃

2𝑇𝑃 + 𝐹𝐶
=

2𝑃𝑃𝑉 ⋅ TPR

𝑃𝑃𝑉 + 𝑇𝑃𝑅
 

Cohen’s Kappa (±) 
(Heidke skill score, 

quality index) 
CK 

𝐴𝐶𝐶 − 𝐶𝐾𝑐

1 − 𝐶𝐾𝑐
=

𝐷𝐸𝑇

(𝑃 ⋅ 𝑁 ⋅ 𝑂𝑃 ⋅ 𝑂𝑁)/2
 

Matthews Correlation 
Coefficient (±) (Phi 

correlation coefficient, 

Cohen’s index, Yule phi) 

MCC 

√𝐼𝑁𝐹𝑂𝑅𝑀 ⋅ 𝑀𝐴𝑅𝐾 

 

=
𝐷𝐸𝑇

√𝑃 ⋅ 𝑁 ⋅ 𝑂𝑃 ⋅ 𝑂𝑁
 

 

Note that more information can be found in [40]. See Table 12 for the recently proposed metrics’ equations. 

References 

1.  Luque A, Carrasco A, Martín A, de las Heras A (2019) The impact of class imbalance in classification 

performance metrics based on the binary confusion matrix. Pattern Recognit 91:216–231. 

https://doi.org/10.1016/j.patcog.2019.02.023 

2.  Staartjes VE, Schröder ML (2018) Letter to the Editor. Class imbalance in machine learning for 

neurosurgical outcome prediction: are our models valid? J Neurosurg Spine 29:611–612. 

https://doi.org/10.3171/2018.5.SPINE18543 

3.  Brown JB (2018) Classifiers and their metrics quantified. Mol Inform 37:1–11. 



 27 

https://doi.org/10.1002/minf.201700127 

4.  Sokolova M (2006) Assessing invariance properties of evaluation measures. Proc Work Test Deployable 

Learn Decis Syst 19th Neural Inf Process Syst Conf (NIPS 2006) 1–6 

5.  Ranawana R, Palade V (2006) Optimized precision - a new measure for classifier performance evaluation. 

In: 2006 IEEE International Conference on Evolutionary Computation. IEEE, Vancouver, BC, Canada, 

pp 2254–2261 

6.  Garcia V, Mollineda R a., Sanchez JS (2010) Theoretical analysis of a performance measure for 

imbalanced data. 2006 IEEE Int Conf Pattern Recognit 617–620. https://doi.org/10.1109/ICPR.2010.156 

7.  Boughorbel S, Jarray F, El-Anbari M (2017) Optimal classifier for imbalanced data using Matthews 

correlation coefficient metric. PLoS One 12:1–17. https://doi.org/10.1371/journal.pone.0177678 

8.  Ferri C, Hernández-Orallo J, Modroiu R (2009) An experimental comparison of performance measures 

for classification. Pattern Recognit Lett 30:27–38. https://doi.org/10.1016/j.patrec.2008.08.010 

9.  Seliya N, Khoshgoftaar TM, Van Hulse J (2009) Aggregating performance metrics for classifier 

evaluation. In: IEEE International Conference on Information Reuse and Integration, IRI. pp 35–40 

10.  Liu Y, Zhou Y, Wen S, Tang C (2016) A strategy on selecting performance metrics for classifier 

evaluation. Int J Mob Comput Multimed Commun 6:20–35. https://doi.org/10.4018/ijmcmc.2014100102 

11.  Brzezinski D, Stefanowski J, Susmaga R, Szczȩch I (2018) Visual-based analysis of classification 

measures and their properties for class imbalanced problems. Inf Sci (Ny) 462:242–261. 

https://doi.org/10.1016/j.ins.2018.06.020 

12.  Hu B-G, Dong W-M (2014) A study on cost behaviors of binary classification measures in class-

imbalanced problems. Comput Res Repos abs/1403.7: 

13.  Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. 

Inf Process Manag 45:427–437. https://doi.org/10.1016/j.ipm.2009.03.002 

14.  Huang J, Ling CX (2005) Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl 

Data Eng 17:299–310. https://doi.org/10.1109/TKDE.2005.50 

15.  Forbes A (1995) Classification-algorithm evaluation: five performance measures based on confusion 

matrices. J Clin Monit Comput 11:189–206. https://doi.org/10.1007/BF01617722 

16.  Pereira RB, Plastino A, Zadrozny B, Merschmann LHC (2018) Correlation analysis of performance 

measures for multi-label classification. Inf Process Manag 54:359–369. 

https://doi.org/10.1016/j.ipm.2018.01.002 

17.  Straube S, Krell MM (2014) How to evaluate an agent’s behavior to infrequent events? Reliable 

performance estimation insensitive to class distribution. Front Comput Neurosci 8:1–6. 

https://doi.org/10.3389/fncom.2014.00043 

18.  Hossin M, Sulaiman MN (2015) A review on evaluation metrics for data classification evaluations. Int J 

Data Min Knowl Manag Process 5:1–11. https://doi.org/10.5121/ijdkp.2015.5201 

19.  Tharwat A (2020) Classification assessment methods. Appl Comput Informatics ahead-of-p:1–13. 

https://doi.org/10.1016/j.aci.2018.08.003 

20.  Chicco D, Jurman G (2020) The advantages of the Matthews correlation coefficient (MCC) over F1 score 

and accuracy in binary classification evaluation. BMC Genomics 21:. https://doi.org/10.1186/s12864-019-

6413-7 

21.  Brzezinski D, Stefanowski J, Susmaga R, Szczech I (2020) On the dynamics of classification measures 

for imbalanced and streaming data. IEEE Trans Neural Networks Learn Syst 31:1–11. 

https://doi.org/10.1109/TNNLS.2019.2899061 

22.  Baldi P, Brunak S, Chauvin Y, et al (2000) Assessing the accuracy of prediction algorithms for 

classification: an overview. Bioinformatics 16:412–424. https://doi.org/10.1093/bioinformatics/16.5.412 

23.  Hu B-G, He R, Yuan X-T (2012) Information-theoretic measures for objective evaluation of 

classifications. Acta Autom Sin 38:1169–1182. https://doi.org/10.1016/S1874-1029(11)60289-9 

24.  Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874. 

https://doi.org/10.1016/j.patrec.2005.10.010 



 28 

25.  Valverde-Albacete FJ, Peláez-Moreno C (2014) 100% classification accuracy considered harmful: The 

normalized information transfer factor explains the accuracy paradox. PLoS One 9:1–10. 

https://doi.org/10.1371/journal.pone.0084217 

26.  Shepperd M (2013) Assessing the predictive performance of machine learners in software defect 

prediction function. In: The 24th CREST Open Workshop (COW), on Machine Learning and Search Based 

Software Engineering (ML&SBSE). Centre for Research on Evolution, Search and Testing (CREST), 

London, pp 1–16 

27.  Schröder G, Thiele M, Lehner W (2011) Setting goals and choosing metrics for recommender system 

evaluations. In: UCERSTI 2 Workshop at the 5th ACM Conference on Recommender Systems. Chicago, 

Illinois, pp 1–8 

28.  Delgado R, Tibau XA (2019) Why Cohen’s kappa should be avoided as performance measure in 

classification. PLoS One 14:1–26. https://doi.org/10.1371/journal.pone.0222916 

29.  Ma J, Zhou S (2020) Metric learning-guided k nearest neighbor multilabel classifier. Neural Comput Appl 

1–15. https://doi.org/10.1007/s00521-020-05134-9 

30.  Fatourechi M, Ward RK, Mason SG, et al (2008) Comparison of evaluation metrics in classification 

applications with imbalanced datasets. In: 7th International Conference on Machine Learning and 

Applications (ICMLA). pp 777–782 

31.  Seliya N, Khoshgoftaar TM, Van Hulse J (2009) A study on the relationships of classifier performance 

metrics. In: 21st IEEE International Conference on Tools with Artificial Intelligence, ICTAI. pp 59–66 

32.  Joshi MV (2002) On evaluating performance of classifiers for rare classes. In: Proceedings IEEE 

International Conference on Data Mining. IEEE, pp 641–644 

33.  Caruana R, Niculescu-Mizil A (2004) Data mining in metric space: an empirical analysis of supervised 

learning performance criteria. Proc 10th ACM SIGKDD Int Conf Knowl Discov Data Min 69–78. 

https://doi.org/1-58113-888-1/04/0008 

34.  Huang J, Ling CX (2007) Constructing new and better evaluation measures for machine learning. IJCAI 

Int Jt Conf Artif Intell 859–864 

35.  Japkowicz N, Shah M (2011) Evaluating learning algorithms: A classification perspective. Cambridge 

University Press, Cambridge 

36.  Contreras-Reyes JE (2020) An asymptotic test for bimodality using the Kullback-Leibler divergence. 

Symmetry (Basel) 12:1–13. https://doi.org/10.3390/SYM12061013 

37.  Shi L, Campbell G, Jones WD, et al (2010) The Microarray Quality Control (MAQC)-II study of common 

practices for the development and validation of microarray-based predictive models. Nat Biotechnol 

28:827–838. https://doi.org/10.1038/nbt.1665 

38.  Rohani A, Mamarabadi M (2019) Free alignment classification of dikarya fungi using some machine 

learning methods. Neural Comput Appl 31:6995–7016. https://doi.org/10.1007/s00521-018-3539-5 

39.  Azar AT, El-Said SA (2014) Performance analysis of support vector machines classifiers in breast cancer 

mammography recognition. Neural Comput Appl 24:1163–1177. https://doi.org/10.1007/s00521-012-

1324-4 

40.  Canbek G, Sagiroglu S, Taskaya Temizel T, Baykal N (2017) Binary classification performance 

measures/metrics: A comprehensive visualized roadmap to gain new insights. In: 2017 International 

Conference on Computer Science and Engineering (UBMK). IEEE, Antalya, Turkey, pp 821–826 

 


