M E T U Department of Mathematics

	Field Extensions and Galois Theory						
	Midterm II						
Code	: Math 368	,	Last Name :				
Acad. Year Semester	: Sprina	Spring		:	Student No	о :	
Instructor	: Karayayla		Department	: 3			
		_	Signature	:			
Date Time Duration	: 02.05.2018 : 17.40 : 150 minutes		7 Questions on 5 Pages SHOW DETAILED WORK!				
1 2	3 4	5 6	7 8				

1.(12 pts.) Write down the definitions of a splitting field, a normal field extension, and a separable element of an algebraic field extension.

2.(12 pts.) Let $\alpha \in L$ be a root of $x^7 + \sqrt[5]{3}x^4 + ix^3 + \sqrt[3]{5} + 2$ where L is a field extension of \mathbb{Q} . Show that $[\mathbb{Q}(\alpha) : \mathbb{Q}] \leq 210$.

3.(2 × 7 pts.) a) Let $\beta = \sqrt{2 + \sqrt{2}} \in \mathbb{R}$. Find the minimal polynomial f of β over Q.

b) Show that $L = \mathbb{Q}(\beta)$ is a splitting field of f over \mathbb{Q} .

4. (14 pts.) Show that $\mathbb{Q}(\sqrt{3}, \sqrt[3]{5})$ is not a splitting field of any $f \in \mathbb{Q}[x]$ over \mathbb{Q} .

5.(6 + 10 pts.) a) Write down a basis of $L = \mathbb{Q}(\sqrt{2}, i)$ over \mathbb{Q} considering it as a vector space.

b) What is the condition on $k \in Q$ such that $\alpha = k\sqrt{2} + i$ is a primitive element of the extension $\mathbb{Q} \subset L$ (that is, $L = \mathbb{Q}(\alpha)$). (Hint: Use the basis from part a and use linear algebra.)

6.(4 + 6 + 6 pts.) Let F be a field of characteristic p > 0 and assume that $f = x^p - x + c \in F[x]$ is irreducible over F. a) Show that f is separable over F.

b) Show that if α is a root of f in some extension field L over F, then $\alpha + 1$ is also a root of f.

c) Show that $F(\alpha)$ is a normal extension field over F.

7.(2 × 8 pts.) Let $L = \mathbb{Q}(\sqrt[5]{3}, \zeta_5)$ where $\zeta_5 = e^{\frac{2\pi i}{5}} \in \mathbb{C}$. a) For a $\sigma \in Gal(L/\mathbb{Q})$, list the possible values of $\sigma(\sqrt[5]{3})$ and $\sigma(\zeta_5)$.

b) How many elements does the Galois group $Gal(L/\mathbb{Q})$ have?

8. (Bonus: 10 pts.) For a field F of characteristic p > 0, the Frobeneous map $\varphi : F \to F$ is defined by $\varphi(x) = x^p$, and it is a field homomorphism.

Assuming that $\varphi: F \to F$ is onto, prove that any irreducible polynomial $f \in F[x]$ is separable over F.