Middle East Technical University - Department of Mathematics Math 473 - Ideals, Varieties and Algorithms
 Midterm 1 - November 22, 2017

Name: \qquad ID Number: \qquad

1. (10 pts.) Let $g=1+y+2 x y z+3 x^{3} y+x z+y^{2} z+y^{2} z^{2}, f_{1}=z+y^{2}$, $f_{2}=y z+1$ and $f_{3}=x z+y$ be polynomials in $k[x, y, z]$ for a field k. Using the grlex order with $x>y>z$, perform the Division Algorithm to divide g by the triple $\left(f_{1}, f_{2}, f_{3}\right)$ (in this order).
2. ($3 \times 6 \mathrm{pts}$.) For a monomial ordering $>$ on monomials of $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ prove each of the following statements. (Notation: $x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$ where $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$.
a) $x^{\alpha}>x^{0}$ for all $\alpha \in \mathbb{Z}_{>0}^{n}$. (0 in x^{0} stands for $(0,0, \ldots, 0)$.)
b) $x^{\alpha} \mid x^{\beta}$ implies $x^{\alpha}<x^{\bar{\beta}}$.
c) If $I=\left\langle x^{\alpha} \mid \alpha \in A\right\rangle$ is a monomial ideal for some $A \subset \mathbb{Z}_{\geq 0}^{n}$ such that $A \neq \emptyset$, and if x^{δ} is the minimum element of the set S of all monomials of I, then show that $\delta \in A$.
3.(16 pts.) Let $W \subset k^{n}$ be an affine variety. If $I(W)$ denotes the ideal of the variety W and $V(J)$ denotes the variety of an ideal $J \subset k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, then show that $V(I(W))=W$.
3. (16 pts.) Let G and \tilde{G} be Groebner bases for the same ideal $I \subset k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for a fixed monomial ordering. Show that $\bar{f}^{G}=\bar{f}^{\tilde{G}}$ for all $f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
5.($10+5$ pts.) Let $S=\left\{f_{i} \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right] \mid i \in \mathbb{Z}^{+}\right\}$be a countably infinite collection of distinct polynomials.
a) If $I=\left\langle f_{1}, f_{2}, \ldots, f_{i}, \ldots\right\rangle$ is the ideal generated by S in $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, then show that there is $N \in \mathbb{Z}^{+}$such that $I=\left\langle f_{1}, f_{2}, \ldots, f_{N}\right\rangle$.
b) Is there an algorithm to find such a number N whose existence is shown in part (a)? Explain.
4. $(20+5$ pts.) a) Apply Buchberger's Algorithm to find a Groebner basis for $I=\left\langle x^{2} y-1, x y^{2}-x\right\rangle$ using lex order with $x>y>z$.
b) Find the reduced Groebner basis of I.
