Middle East Technical University - Department of Mathematics Math 473 - Ideals, Varieties and Algorithms Midterm 1 - November 22, 2017

Name:

ID Number:

1.(10 pts.) Let $g = 1 + y + 2xyz + 3x^3y + xz + y^2z + y^2z^2$, $f_1 = z + y^2$, $f_2 = yz + 1$ and $f_3 = xz + y$ be polynomials in k[x, y, z] for a field k. Using the grlex order with x > y > z, perform the Division Algorithm to divide g by the triple (f_1, f_2, f_3) (in this order).

2.(3x6 pts.) For a monomial ordering > on monomials of $k[x_1, x_2, ..., x_n]$ prove each of the following statements. (Notation: $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$ where $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{Z}_{\geq 0}^n$.)

a) $x^{\alpha} > x^{0}$ for all $\alpha \in \mathbb{Z}^{n}_{\geq 0}$. (0 in x^{0} stands for (0, 0, ..., 0).)

b) $x^{\alpha} | x^{\beta}$ implies $x^{\alpha} < x^{\overline{\beta}}$.

c) If $I = \langle x^{\alpha} | \alpha \in A \rangle$ is a monomial ideal for some $A \subset \mathbb{Z}_{\geq 0}^{n}$ such that $A \neq \emptyset$, and if x^{δ} is the minimum element of the set S of all monomials of I, then show that $\delta \in A$.

3.(16 pts.) Let $W \subset k^n$ be an affine variety. If I(W) denotes the ideal of the variety W and V(J) denotes the variety of an ideal $J \subset k[x_1, x_2, ..., x_n]$, then show that V(I(W)) = W.

4.(16 pts.) Let G and \tilde{G} be Groebner bases for the same ideal $I \subset k[x_1, x_2, ..., x_n]$ for a fixed monomial ordering. Show that $\overline{f}^G = \overline{f}^{\tilde{G}}$ for all $f \in k[x_1, x_2, ..., x_n]$.

5.(10+5 pts.) Let $S = \{f_i \in k[x_1, x_2, ..., x_n] | i \in \mathbb{Z}^+\}$ be a countably infinite collection of distinct polynomials.

a) If $I = \langle f_1, f_2, ..., f_i, ... \rangle$ is the ideal generated by S in $k[x_1, x_2, ..., x_n]$, then show that there is $N \in \mathbb{Z}^+$ such that $I = \langle f_1, f_2, ..., f_N \rangle$.

b) Is there an algorithm to find such a number N whose existence is shown in part (a)? Explain.

6.(20+5 pts.) a) Apply Buchberger's Algorithm to find a Groebner basis for $I = \langle x^2y - 1, xy^2 - x \rangle$ using *lex* order with x > y > z. b) Find the reduced Groebner basis of *I*.