Department of Mathematics

1. (16 pts.) For $f \in \mathbb{R}[x]$ of degree 4 , let x_{1}, x_{2}, x_{3} and x_{4} be the four roots of f in \mathbb{C}. Express the discriminant Δ of f in terms of the roots of f, and show that $\Delta<0$ if exactly two of the roots of f are real and distinct.
2. (16 pts.) Let $f=x^{3}+2 x^{2}+3 x+5$ and α, β, γ be its roots in \mathbb{C}. Find a polynomial g of degree 3 whose roots are $\alpha \beta, \alpha \gamma$ and $\beta \gamma$.
$3 .(2 \times 9$ pts.) a) Assume $f \in F[x]$ is irreducible where F is a field and f does not divide $g \in F[x]$. Show that there are $A, B \in F[x]$ such that $A f+B g=1$. (Hint: Consider the ideal $\langle f, g\rangle$ generated by f and g in $F[x]$ and use the fact that $F[x]$ is a PID.)
b) For f, g, A, B as in part (a), show that $B+\langle f\rangle$ is the multiplicative inverse of $g+\langle f\rangle$ in the field $\frac{F[x]}{\langle f\rangle}$.
3. $(3 \times 6 \mathrm{pts}$.) Let $F \subset L$ be a field extension and $\alpha \neq 0, \alpha \in L$ be algebraic over F.
a) Show that $1 / \alpha$ is also algebraic over F.
b) Show that $[F(\alpha): F]=[F(1 / \alpha): F]$.
c) If $f=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in F[x]$ is the minimal polynomial of α over F, what is the minimal polynomial of $1 / \alpha$ over F ?
4. $(2 \times 7$ pts. $)$ a) Show that $f=\frac{1}{3} x^{4}+\frac{2}{5} x^{3}+\frac{7}{2} x^{2}+x+2 \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q}.
b) If $a \in \mathbb{Z}$ is the product of distinct primes, then show that $f=x^{n}-a \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q}.
6.(Bonus, 10 pts.) For a field extension $F \subset L$, assume that $\alpha \in L$ is algebraic over F such that the degree of its minimal polynomial over F is odd. Prove that $F\left(\alpha^{2}\right)=F(\alpha)$.
5. $(10+8$ pts. $)$ a) Let $[F(\alpha): F]=r$ and $[F(\beta): F]=s$ for two elements $\alpha, \beta \in L$ for an extension field L over F. Show that $l c m(r, s) \leq[F(\alpha, \beta): F] \leq r s$ where $l c m(r, s)$ is the least common multiple of r and s.
b) If $\zeta_{5}=e^{\frac{2 \pi i}{5}}$, what is $\left[\mathbb{Q}\left(\zeta_{5}, \sqrt[3]{2}\right): \mathbb{Q}\right]$?
