M E T U Department of Mathematics

	Field	Extensions and Galois Theory	
		Midterm I	
Code Acad. Year Semester Instructor	: Math 368 : 2017-2018 : Spring : Karayayla	Last Name:Name:Student NoDepartment:Signature:	:
$\begin{array}{ccc} \text{Date} & : 23.06\\ \text{Time} & : 17.4\\ \text{Duration} & : 120 \end{array}$: 17.40 : 120 minutes	7 Questions on 5 Pages SHOW DETAILED WORK!	
1 2	3 4 5		

1.(16 pts.) For $f \in \mathbb{R}[x]$ of degree 4, let x_1, x_2, x_3 and x_4 be the four roots of f in \mathbb{C} . Express the discriminant Δ of f in terms of the roots of f, and show that $\Delta < 0$ if exactly two of the roots of f are real and distinct.

2.(16 pts.) Let $f = x^3 + 2x^2 + 3x + 5$ and α , β , γ be its roots in \mathbb{C} . Find a polynomial g of degree 3 whose roots are $\alpha\beta$, $\alpha\gamma$ and $\beta\gamma$.

 $3.(2 \times 9 \text{ pts.})$ a) Assume $f \in F[x]$ is irreducible where F is a field and f does not divide $g \in F[x]$. Show that there are $A, B \in F[x]$ such that Af + Bg = 1. (Hint: Consider the ideal $\langle f, g \rangle$ generated by f and g in F[x] and use the fact that F[x] is a PID.)

b) For f, g, A, B as in part (a), show that $B + \langle f \rangle$ is the multiplicative inverse of $g + \langle f \rangle$ in the field $\frac{F[x]}{\langle f \rangle}$.

4.(3 × 6 pts.) Let $F \subset L$ be a field extension and $\alpha \neq 0$, $\alpha \in L$ be algebraic over F. a) Show that $1/\alpha$ is also algebraic over F.

b) Show that $[F(\alpha):F] = [F(1/\alpha):F].$

c) If $f = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in F[x]$ is the minimal polynomial of α over F, what is the minimal polynomial of $1/\alpha$ over F?

5. $(2 \times 7 \text{ pts.})$ a) Show that $f = \frac{1}{3}x^4 + \frac{2}{5}x^3 + \frac{7}{2}x^2 + x + 2 \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q} .

b) If $a \in \mathbb{Z}$ is the product of distinct primes, then show that $f = x^n - a \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q} .

6.(Bonus, 10 pts.) For a field extension $F \subset L$, assume that $\alpha \in L$ is algebraic over F such that the degree of its minimal polynomial over F is odd. Prove that $F(\alpha^2) = F(\alpha)$.

7.(10 + 8 pts.) a) Let $[F(\alpha) : F] = r$ and $[F(\beta) : F] = s$ for two elements $\alpha, \beta \in L$ for an extension field L over F. Show that $lcm(r,s) \leq [F(\alpha,\beta) : F] \leq rs$ where lcm(r,s) is the least common multiple of r and s.

b) If $\zeta_5 = e^{\frac{2\pi i}{5}}$, what is $[\mathbb{Q}(\zeta_5, \sqrt[3]{2}) : \mathbb{Q}]$?