Middle East Technical University - Department of Mathematics Math 473 - Ideals, Varieties and Algorithms FINAL - January 18, 2018

Name: \qquad ID Number: \qquad

1. $\left(5 \times 4\right.$ pts.) a) For $f=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in k[x]$ where $a_{n} \neq 0$, let the homogenization of f be the polynomial $f^{h}=a_{n} x^{n}+a_{n-1} x^{n-1} y+\cdots+$ $a_{1} x y^{n-1}+a_{0} y^{n} \in k[x, y]$, that is $f^{h}=\sum_{i=0}^{n} a_{i} x^{i} y^{n-i}$. Show that $f(x)$ has a root in k if and only if there exists $(a, b) \neq(0,0) \in k^{2}$ such that $f^{h}(a, b)=0$.
b) If k is not algebraically closed, show that there exists $g \in k[x, y]$ such that $V(g)=\{(0,0)\}$.
c) Generalize part (b) inductively to show that if k is not algebraically closed, then there exists $g \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ such that $V(g)=\{(0,0, \ldots, 0)\} \subset k^{n}$.
d) Show that if k is not algebraically closed and $W=V\left(g_{1}, g_{2}, \ldots, g_{r}\right) \subset k^{n}$ is a variety, then there exists $f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ such that $W=V(f)$.
e) Explicitly write down f in part (d) in terms of $g_{1}, g_{2}, \ldots, g_{r}$ in the case $k=\mathbb{R}$.
2. $(10+10$ pts. $)$ a) Show that if $f, g \in \sqrt{I} \subset k\left[x_{1}, \ldots, x_{n}\right]$ where I is an ideal, then there exists $N \in \mathbb{Z}^{+}$such that $h^{N} \in I$ for all $h \in\langle f, g\rangle$.
b) For any infinite field k, show that $J=\langle x y, y z, x z\rangle \subset k[x, y, z]$ is a radical ideal. (Hint: Find $V(J)$ first, and then use $\sqrt{J} \subset I(V(J))$. Division Algorithm will be useful.)
3. ($10+10$ pts.) a) For an algebraically closed field k, show that if $f \in$ $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is irreducible, then $V(f) \subset k^{n}$ is an irreducible variety.
b) If k is algebraically closed, using the unique factorization in $k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, write down the irreducible components of a variety $V(g)$ where $g \in k\left[x_{1}, \ldots, x_{n}\right]$ is any non-constant polynomial.
4. (10 pts.) Show that if k is algebraically closed, then \sqrt{I} is the intersection of all maximal ideals containing I for any proper ideal $I \subset k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.
5. (10 pts.) Let $V \subset W \subset k^{n}$ be varieties. Show that any irreducible component of V is contained in some irreducible component of W.
6. $(10+10$ pts. $)$ a) Find the reduced Groebner basis of the ideal $I=\langle x-$ $\left.y^{3} z, y^{2}+z^{3}\right\rangle \in \mathbb{Q}[x, y, z]$ using lex order $x>y>z$.
b) Is $f=x y^{2}+x+y^{3} z^{2}+y^{2} z$ in I ?
