Name:

Student number:
METU MATH 116, Final Exam
Friday, June 7, 2013, at 9:30 (120 minutes)
Instructors: Coşkun, Karayayla, Kuzucuoğlu, Solak
Instructions: It should be obvious to the grader how to read

1	
2	
3	
4	
5	
Σ	

Problem 1. (12pts)
Prove that if H is a subgroup of G with $|G: H|=2$, then H is a normal subgroup of G.

Problem 2. (12pts)

(a) Show that the polynomial, $f(x)=2 x^{3}+x^{2}+x+1$ is irreducible in $\mathbf{Q}[x]$.
(b) Why is $f(x)$ reducible in $\mathbf{R}[x]$?

Problem 3. (12pts)
Find a polynomial $f(x)$ of least degree with the given property: $f(x)$ is over real numbers and $-3 i$ and $1-i$ are zeros of it.

Problem 4. (12pts)
(a) Find gcd of $f(x)=x^{3}-2 x^{2}+x-2$ and $g(x)=x^{2}-x-2$ in $\mathbf{R}[x]$.
(b) Express your gcd as a linear combination of the given polynomials $f(x)$ and $g(x)$.

Problem 5. (12pts)

(a) Prove that if $\alpha: R \rightarrow S$ is a surjective (onto) ring homomorphism, then for every ideal I in R the image $\alpha(I)$ is an ideal in S.
(b) Give an example to show that if α is not surjective, then $f(I)$ need not be an ideal. Show your work clearly.

