Name:		
	1	
Student number:	2	
METU MATH 116, Final Exam	3	
Friday, June 7, 2013, at 9:30 (120 minutes)	4	
Instructors: Coşkun, Karayayla, Kuzucuoğlu, Solak	5	

Σ

your solutions. Please work carefully. $\,$

Instructions: It should be obvious to the grader how to read

Problem 1. (12pts)

Prove that if H is a subgroup of G with |G:H|=2, then H is a normal subgroup of G.

Problem 2. (12pts)

(a) Show that the polynomial, $f(x) = 2x^3 + x^2 + x + 1$ is irreducible in $\mathbb{Q}[x]$.

(b) Why is f(x) reducible in $\mathbf{R}[x]$?

Problem 3. (12pts)

Find a polynomial f(x) of least degree with the given property: f(x) is over real numbers and -3i and 1-i are zeros of it.

Problem 4. (12pts)

(a) Find gcd of $f(x) = x^3 - 2x^2 + x - 2$ and $g(x) = x^2 - x - 2$ in $\mathbf{R}[x]$.

(b) Express your gcd as a linear combination of the given polynomials f(x) and g(x).

Problem 5. (12pts)

(a) Prove that if $\alpha: R \to S$ is a surjective (onto) ring homomorphism, then for every ideal I in R the image $\alpha(I)$ is an ideal in S.

(b) Give an example to show that if α is not surjective, then f(I) need not be an ideal. Show your work clearly.