Department of Mathematics

1. ($8+\mathbf{1 2} \mathbf{p t s}$.) Suppose that a_{n} is a sequence which satisfies a linear homogeneous recurrence relation with constant coefficients. Assume that the characteristic equation of this recurrence relation is

$$
(r-2)^{2}(r-3)=0 .
$$

a) Find the recurrence relation of a_{n}.
b) Find an explicit formula for a_{n} if $a_{0}=7, a_{1}=25, a_{2}=77$.
2. $\left(\mathbf{1 5}+\mathbf{5} \mathbf{p t s}\right.$.) Let a_{n} be the number of strings (words, not necessarily meaningful) of length n consisting of the letters A, B, C, D, E that do not contain two consecutive A's. (Note that these strings may not contain some of the 5 letters.)
a) Find a recurrence relation that a_{n} satisfies.
b) Compute $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5}.
3. $(\mathbf{1 0}+\mathbf{1 0} \mathbf{~ p t s .)}$ a) A monkey types up a random word of length 3 on a keyboard with 26 letters. Find the probability that the word contains an odd number of vowels (Vowels are A,E,I,O and U).
3.b) Another monkey picks randomly 3 letters from a box containing the 26 letters, without replacement (i.e. once a letter is picked, it is not returned into the box). Find the probability that these letters contain an even number (including 0) of vowels. (e.g. $\{A, B, E\}$ is such a selection).
4. ($\mathbf{1 0}+\mathbf{1 0}$ pts.) Suppose that a box contains 3 white and 1 black balls, and a second box contains 2 white and 3 black balls. Suppose also that a person chooses at random one of the boxes, then chooses one of the balls in it.
a) Find the probability that the chosen ball is black.
b) Suppose that the chosen ball turned out to be black. Find the probability that this black ball has been selected from the first box.
5. $(\mathbf{1 0}+\mathbf{1 0}$ pts.) A die is biased such that its outcomes have the following probabilities:

$$
P(1)=P(2)=P(4)=P(5)=P(6), \text { and } P(3)=\frac{1}{4} .
$$

a) Suppose that this biased die is rolled six times consecutively. What is the probability that in exactly four of these six rolls an even number comes up?
b) Suppose that together with this biased die a second die, which is fair, is also rolled. If these two dice are rolled once, what is the probability that one of the two outcomes is 3 and the other is 6 ?

