M E T U
 Department of Mathematics

Question 1 ($\mathbf{1 2} \mathbf{p t s}$) Show that if $f(z)$ is entire and $|f(z)| \leq\left|e^{z}\right|$ for all $z \in \mathbb{C}$, then there exists a constant $c \in \mathbb{C}$ such that $f(z)=c e^{z}$.

Question 2 (13 pts) Let $f(z)$ be a function which is continuous on a closed and bounded region $R \subset \mathbb{C}$, and suppose that f is analytic and non-constant throughout the interior of R. Assuming that $f(z) \neq 0$ anywhere in R, prove that $|f(z)|$ has an absolute minimum value m on R which occurs on the boundary of R and never in the interior of R.

Question $3(6+6+6+7=\mathbf{2 5} \mathrm{pts})$ Evaluate the following contour integrals where \mathcal{C} is the positively oriented boundary of the given region R
a) $\int_{\mathcal{C}} \frac{\cos z}{z\left(z^{2}+8\right)} d z, R=\{x+i y| | x|\leq 2,|y| \leq 2\}$.
b) $\int_{\mathcal{C}} \frac{\cosh z}{z^{4}} d z$, the same R as in part (a).
c) $\int_{\mathcal{C}} \frac{z}{(z-1+i)^{2}} d z, R=\left\{z \in \mathbb{C}| | z-2-2 i \left\lvert\, \leq \frac{3}{2}\right.\right\}$.
d) $\int_{\mathcal{C}} \frac{1}{\left(z^{2}+1\right)\left(z^{2}-2 z-3\right)} d z, R=\{z \in \mathbb{C}| | z \mid \leq 2,0 \leq \arg (z) \leq 5 \pi / 4\}$.

Question $4(7+8=15$ pts) Let $f(z)=\log z=\ln r+i \theta$, where $-\pi / 4<\theta<7 \pi / 4$, and let \mathcal{C} be the part of the graph of the polar equation $r=1+\sin (2 \theta / 3)$ where $0 \leq \theta \leq 3 \pi / 2$. \mathcal{C} is given a direction such that its initial point is 1 .
a) Express $\int_{\mathcal{C}} f(z) d z$ as a definite integral using a parametrization of \mathcal{C}.
b) Evaluate $\int_{\mathcal{C}} f(z) d z$ without using a parametrization of the given contour \mathcal{C}.

Question 5 ($\mathbf{1 5} \mathbf{~ p t s)}$ Find the Taylor series expansion of $f(z)=\frac{\cos (z)}{z}$ around the point $z_{0}=\pi$ up to and including the $(z-\pi)^{3}$ term. What is the radius of convergence of this series? (i.e. find the largest $R>0$ such that $f(z)$ is equal to this Taylor series on the open disk $|z-\pi|<R$.)

Question $6(\mathbf{6}+\mathbf{7}+\mathbf{7}=\mathbf{2 0} \mathbf{~ p t s})$ Find the Laurent series expansions of the function $f(z)=\frac{z^{2}}{(z-2)(z+3)}$ centered at $z_{0}=0$, where the representation is valid;
(a) in the region $0 \leq|z|<2$,
(b) in the region $2<|z|<3$,
(c) in the region $3<|z|$.

