M E T U Department of Mathematics

	Complex Calculus							
Midterm 2								
Code	: Math 353 ar : 2017-2018 : Fall			Ι	last Name	:		
Acad. Yea Semester				Ν	Name	:	Student No.	:
Demosici				I	Departmen	t :	Section	:
Date	: Dec	: December.18.2018 : 17:40 : 120 minutes			Signature	:		
Time Duration	: 17:4 : 120				6 QUESTIONS ON 4 PAGES TOTAL 100 POINTS			
1 2	3	4	5	6			SHOW YOUR WORK	

Question 1 (12 pts) Show that if f(z) is entire and $|f(z)| \le |e^z|$ for all $z \in \mathbb{C}$, then there exists a constant $c \in \mathbb{C}$ such that $f(z) = ce^z$.

Question 2 (13 pts) Let f(z) be a function which is continuous on a closed and bounded region $R \subset \mathbb{C}$, and suppose that f is analytic and non-constant throughout the interior of R. Assuming that $f(z) \neq 0$ anywhere in R, prove that |f(z)| has an absolute minimum value m on R which occurs on the boundary of R and never in the interior of R.

Question 3 (6+6+6+7=25 pts) Evaluate the following contour integrals where C is the positively oriented boundary of the given region Ra) $\int_{\mathcal{C}} \frac{\cos z}{z(z^2+8)} dz$, $R = \{x + iy | |x| \le 2, |y| \le 2\}$.

b)
$$\int_{\mathcal{C}} \frac{\cosh z}{z^4} dz$$
, the same *R* as in part (a).

c)
$$\int_{\mathcal{C}} \frac{z}{(z-1+i)^2} dz, R = \{ z \in \mathbb{C} | |z-2-2i| \le \frac{3}{2} \}.$$

d)
$$\int_{\mathcal{C}} \frac{1}{(z^2+1)(z^2-2z-3)} dz, R = \{z \in \mathbb{C} | |z| \le 2, 0 \le \arg(z) \le 5\pi/4\}.$$

Question 4(7+8=15 pts) Let $f(z) = \log z = \ln r + i\theta$, where $-\pi/4 < \theta < 7\pi/4$, and let C be the part of the graph of the polar equation $r = 1 + \sin(2\theta/3)$ where $0 \le \theta \le 3\pi/2$. C is given a direction such that its initial point is 1.

a) Express $\int_{\mathcal{C}} f(z) dz$ as a definite integral using a parametrization of \mathcal{C} .

b) Evaluate $\int_{\mathcal{C}} f(z) dz$ without using a parametrization of the given contour \mathcal{C} .

Question 5 (15 pts) Find the Taylor series expansion of $f(z) = \frac{\cos(z)}{z}$ around the point $z_0 = \pi$ up to and including the $(z - \pi)^3$ term. What is the radius of convergence of this series? (i.e. find the largest R > 0 such that f(z) is equal to this Taylor series on the open disk $|z - \pi| < R$.)

 $\frac{\text{Question 6 (6+7+7=20 pts)}}{f(z) = \frac{z^2}{(z-2)(z+3)}}$ Find the Laurent series expansions of the function

(a) in the region $0 \leq |z| < 2$,

(b) in the region 2 < |z| < 3,

(c) in the region 3 < |z|.