M E T U Department of Mathematics

Complex Calculus								
MidTerm 1								
Code Acad. Ye Semester	ar : 20				Last Name Name Departme	:	Student No. Section	:
Date Time Duration	: November.13.2017 : 17:40 : 120 minutes				Signature : 6 QUESTIONS ON 4 PAGES TOTAL 100 POINTS			
1 2	3	4	5	6	-		SHOW YOUR WORK	

Question 1 (10+10=20 pts) a) Show that for any complex numbers z and w, Re(z) > 0 and Re(w) > 0 implies that Arg(zw) = Arg(z) + Arg(w). (Re(z): real part of $z \in \mathbb{C}$.) Arg(z): principal argument of $z \in \mathbb{C}$.)

b) Assume that $\lim_{z\to z_0} f(z) = 0$ and there exists M > 0 $(M \in \mathbb{R})$ such that |g(z)| < M for all z in some neighborhood of z_0 . Show that $\lim_{z\to z_0} f(z)g(z) = 0$.

Question 2 (6+6+6=18 pts) Let $f(z) = 3x^3 - 2y^3 + x^2 + y^2 + i(3x^2y + 2xy^2)$ where

 $\overline{z = x + iy \ (x, \ y \in \mathbb{R})}.$

a) Find all points $z \in \mathbb{C}$ such that f'(z) exists.

b) Find all points $z \in \mathbb{C}$ such that f'(z) = 0.

c) If it exists, determine the largest set $D \subset \mathbb{C}$ such that f(z) is analytic on D.

Question 3 (14 pts) Let $V(x, y) = 5x^4y - 10x^2y^3 + y^5 + 2xy$. Find a function U(x, y) (if it exists) such that F(z) = U(x, y) + iV(x, y) is an entire function, where z = x + iy such that $x, y \in \mathbb{R}$.

Question 4 (8+10=18 pts) (a) Prove the identities $\cosh^2 x - \sinh^2 x = 1$ and $\sinh x + \cosh x = e^x$ for $x \in \mathbb{R}$ by using the definitions of the functions directly.

(b) Deduce that $\cosh^2 z - \sinh^2 z = 1$ and $\sinh z + \cosh z = e^z$ for all $z \in \mathbb{C}$ from part (a) by using the theorem on uniqueness of analytic extensions (analytic continuation).

Question 5 (13 pts) Suppose that f(z) is analytic on a domain (an open and connected set) $D \subseteq \mathbb{C}$ and for all $z \in D$, we have

$$Re(f(z)) = 2Im(f(z)).$$

Prove that f(z) must be constant on D.

Question 6 (17 pts) Let f(z) be the linear fractional transformation such that f(0) = 1, f(1) = i and f(i) = 0. What is the image of the unit circle under f?