Department of Mathematics

	Analytic Geometry MidTerm II			
Code Acad. Year Semester Coordinator	: Math 115 : 2017-2018 : Fall : E. Coskun	Last Name Name Department Signature	Student No	:
Date Time Duration	: 17.40 : 120 minutes	$\begin{array}{r} 5 \mathrm{Que} \\ \mathrm{To} \end{array}$	4 Pages Points	
	$\left.\right\|^{4}$			

1. $(10+10$ pts. $)$ a) Show that the four points $A(1,1,2), B(3,5,4), C(0,-3,5)$ and $D(3,7,0)$ are coplanar (they all lie on a plane).
b) Write down the parametric equations of the line L which is the intersection of the two planes $2 x-3 y+5 z=15$ and $x+4 y+3 z=2$.
2. $\mathbf{(7 + 7 + 6} \mathbf{p t s}$.) Let two lines L_{1} and L_{2} be given as follows

$$
L_{1}: \frac{x+2}{2}=\frac{y-1}{3}=\frac{z+1}{-1} \text { and } L_{2}: \frac{x-1}{-1}=\frac{y+1}{2}=\frac{z-2}{4} .
$$

a) Show that L_{1} and L_{2} are skew lines.
b) Write down the equation of the plane P which contains the line L_{2} such that the line L_{1} is parallel to the plane P.
c) Find the distance between the line L_{1} and the plane P found in part (b).
3. (4×5 pts.) Let S be the parabola with vertex at $V(4,1)$ which has the line $d=\left\{(x, y) \in \mathbb{R}^{2} \mid y=-3\right\}$ as its directrix.
a) Find the equation of the axis ℓ of S.
b) Find the point of intersection G of d and ℓ.
c) Find the focus F of S.
d) Find an equation, in coordinate form, of S.
$L_{2}:(x, y, z)=(1+2 t, 2+3 t,-2+6 t), t \in \mathbb{R}$ be two lines in \mathbb{R}^{3}.
a) Calculate the distance between L_{1} and L_{2}.
b) Find an equation of the plane \mathcal{P} which contains both of the lines L_{1} and L_{2}.
5. $(\mathbf{1 0}+\mathbf{1 0} \mathbf{p t s .})$ Let $P=(1,3,4)$ and T be the plane given by $x-2 y+5 z=5$.
a) Find the point $Q \in T$ which is closest to P among all points of T.
b) Write down a vector equation of the line L_{1} which passes through P such that L_{1} is parallel to the plane T and L_{1} intersects the line L_{2} at a point, where L_{2} is the line given by $L_{2}: \frac{x-1}{2}=\frac{y-6}{5}=\frac{z-1}{3}$.

