M E T U Department of Mathematics

		Analytic Geometry	
		MidTerm II	
Code Acad. Year Semester Coordinator Date Time Duration	: Math 115 : 2017-2018 : Fall :: E. Coskun : 14.12.2017 : 17.40 : 120 minutes	Last Name : Name : Student No Department : Signature :):
		5 Questions on 4 Pages Total 100 Points	
1 2	3 4		

1.(10+10 pts.) a) Show that the four points A(1,1,2), B(3,5,4), C(0,-3,5) and D(3,7,0) are coplanar (they all lie on a plane).

b) Write down the parametric equations of the line L which is the intersection of the two planes 2x - 3y + 5z = 15 and x + 4y + 3z = 2.

2.(7+7+6 pts.) Let two lines L_1 and L_2 be given as follows

$$L_1: \frac{x+2}{2} = \frac{y-1}{3} = \frac{z+1}{-1}$$
 and $L_2: \frac{x-1}{-1} = \frac{y+1}{2} = \frac{z-2}{4}$.

a) Show that L_1 and L_2 are skew lines.

b) Write down the equation of the plane P which contains the line L_2 such that the line L_1 is parallel to the plane P.

c) Find the distance between the line L_1 and the plane P found in part (b).

3. (4×5 pts.) Let S be the parabola with vertex at V(4, 1) which has the line $d = \{(x, y) \in \mathbb{R}^2 | y = -3\}$ as its directrix.

a) Find the equation of the axis ℓ of S.

b) Find the point of intersection G of d and ℓ .

c) Find the focus F of S.

d) Find an equation, in coordinate form, of S.

4. (10+10 pts.) Let $L_1: (x, y, z) = (-2 + 2t, 3 + 3t, 6t), t \in \mathbb{R}$ and

 $L_2: (x, y, z) = (1 + 2t, 2 + 3t, -2 + 6t), t \in \mathbb{R}$ be two lines in \mathbb{R}^3 . a) Calculate the distance between L_1 and L_2 .

b) Find an equation of the plane \mathcal{P} which contains both of the lines L_1 and L_2 .

5. (10+10 pts.) Let P = (1, 3, 4) and T be the plane given by x - 2y + 5z = 5. a) Find the point $Q \in T$ which is closest to P among all points of T.

b) Write down a vector equation of the line L_1 which passes through P such that L_1 is parallel to the plane T and L_1 intersects the line L_2 at a point, where L_2 is the line given by L_2 : $\frac{x-1}{2} = \frac{y-6}{5} = \frac{z-1}{3}$.