Department of Mathematics

|  | Basic Algebra <br> MidTerm II |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Code <br> Acad. Year <br> Semester <br> Instructor | $\begin{aligned} & \text { : Math } 116 \\ & : \text { 2013-2014 } \\ & \text { : Spring } \\ & \text { : G.E., T.K.,M.K.,A.S } \end{aligned}$ | Last Name <br> Name <br> Department <br> Signature | Student |  |
| Date <br> Time <br> Duration | $\begin{aligned} & : 06.05 .2014 \\ & : 17.40 \\ & : 100 \text { minutes } \\ & \hline \end{aligned}$ |  | 4 Pages Points |  |
| ${ }^{1}{ }^{2}$ | $\left.\left.{ }^{3} \quad\right\|^{4}\right\|^{6}$ |  |  |  |

1. (10 pts.) Let $f=(1,2,4,3)$ and $g=(1,3,5,2)$ be permutations.
(i) Write the product $f g$ as a product of disjoint cycles.
(ii) Write $f g$ in as a product of transpositions.
(iii) Is $f g$ an odd permutation or an even permutation? Give reason.
2.(10 pts.) Suppose that $G$ is a group and $K, N$ are normal subgroups of $G$.
(i) Show that $K N=\{k n \mid k \in K, n \in N\}$ is a subgroup of $G$.
(ii) Show that $K N$ is a normal subgroup of $G$.
2. (10 pts.) If $K$ and $N$ are normal subgroups of $G$ such that $|G / N|=5$ and $|G / K|=3$, then show that $x^{15} \in K \cap N$ for all $x \in G$.
3. (10 pts.) (i) Prove that if $G=\langle a\rangle$ is a cyclic group, then $G / N$ is a cyclic group for any subgroup $N$ of $G$.
(ii) Give an example of a non-cyclic group $G$ and a proper normal subgroup $N$ of $G$ such that $G / N$ is a cyclic group.
4. (10 pts.) (i)Let $G$ be a group, $a$ and $g$ be elements in $G$. Prove that if $a$ has order $n$, then $g a g^{-1}$ also has order $n$ for a natural number $n$.

Let $f=(1,2,3)(4,5)$ and $g=(2,3,4,7,8)$ be two permutations in the symmetric group.
(ii) Find $g f g^{-1}$.
(iii) Find the order of $g f g^{-1}$
6. (10 pts.) (a) Let $G=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right) \right\rvert\, a \in \mathbb{R}, \quad a \neq 0\right\}$ be a group of $2 \times 2$ matrices under matrix multiplication. Show that $G$ is isomorphic to the group $\mathbb{R}-\{0\}$ (non-zero real numbers) under multiplication of numbers.
(b) Let $H=\left\{\left.\left(\begin{array}{ll}b & 0 \\ 0 & b\end{array}\right) \right\rvert\, \quad b \in \mathbb{Q}, \quad b \neq 0 \quad\right\}$ be the subgroup of $G$ isomorphic to the multiplicative group of nonzero rationals.
Is $H$ a normal subgroup of $G$ ? (give reason)
(c) Find the cardinality of $G / H$. (Give reason)

