Department of Mathematics

1. $(5+10+5$ pts.) Let A and B be two people who want to communicate with each other using the RSA cryptosystem. Suppose that the public key of A is $\left(k_{A}, n_{A}\right)$ and the public key of B is $\left(k_{B}, n_{B}\right)$.
a) If A wants to send a message to B, after converting the text of the message to an integer M by replacing the letters of the alphabet by $01,02, \ldots, 26$ and spaces between words by 27 , what does A send to B as the encrypted message? (Assume that the message is short enough so that it is not necessary to break it into smaller pieces.)
b) Let S be the encrypted message that B receives from A. How does B find M ?
c) Why can't a third person C easily find M even if C gets the inforation S (encrypted message) and knows the public keys of A and B ?
b) Using the information $5^{10} \equiv 12(\bmod 47)$, solve the congruence $x^{6} \equiv 12(\bmod 47)$ (Express the solutions as powers of 5 modulo 47).
2. (10 pts .) Use the information that 2 is a primitive root of 11 to find a primitive root r_{1} of $N_{1}=11^{17}$ and a primitive root r_{2} of $N_{2}=2 \cdot 11^{17}$.
3. (15 pts.) Solve $2 x^{2}+7 x+4 \equiv 0(\bmod 83)$.
4. (10 pts.) Let p be an odd prime and $\operatorname{gcd}\left(p^{n}, a\right)=1$. Show that if x_{1} and x_{2} are two solutions of $x^{2} \equiv a\left(\bmod p^{n}\right)$, then either $x_{1} \equiv x_{2}\left(\bmod p^{n}\right)$ or $x_{1} \equiv-x_{2}\left(\bmod p^{n}\right)$.
5. $(10+10 \mathrm{pts}$.) Find the number of solutions modulo n of
a) $x^{2} \equiv 16(\bmod n)$ where $n=105$.
b) $x^{2} \equiv 149(\bmod n)$ where $n=5^{3} 7^{4} 11^{2}$.
6. (10 pts.) Find the largest $k \in \mathbb{Z}$ such that $125^{k} \mid 61 \cdot 62 \cdots 199 \cdot 200$.
