M E T U
 Department of Mathematics

Question $1(9+4+5 \mathrm{pts})$ For the function

$$
f(z)=z^{5} \cos \left(\frac{4}{z^{2}}\right)+\frac{z^{2}+1}{(z-1)^{2}\left(z^{2}+9\right)}
$$

a) Find all poles of $f(z)$. What are the orders of these poles, and what are the residues of $f(z)$ at these poles?
b) Does $f(z)$ have other singular points except for its poles? If so, what type of singular points are they, and what are the residues of $f(z)$ at these point(s)?
c) Evaluate the contour integral $\int_{\mathcal{C}} f(z) d z$ where \mathcal{C} is the circle $|z|=2$ oriented counter-clockwise.

Question $2(10+8$ pts) Let $f(z)$ be the linear fractional transformation such that $f(1)=2 i$, $f(2 i)=-i, f(-i)=1$.
(a) Find a formula of $f(z)$.
(b) Show that $f \circ f \circ f(z)=z$ for all z in the domain of f.

Question $3(\mathbf{9}+\mathbf{9} \mathbf{p t s})$ a) Write down $f(z)=\frac{\exp (1 / z)-1}{z-3}$ as a product of two Laurent series on the annulus $3<|z|<\infty$.
b) Let $g(z)=\frac{\sin \left(z^{2}\right)}{z}$ and $h(z)=z g^{\prime}(z)$. Using Taylor series, calculate $h^{(353)}(0)$.

Question 4 (10 pts) Suppose that $f(z)$ is an analytic function on the open unit disk D such that for any $z \in D-\{0\},|f(z)| \leq|\sin (1 / z)|$ holds. Show that f must be the constant 0 function. (Hint: Can you find any $z \in D$ such that $f(z)=0$?)

Question 5 (18 pts) Use residues to find the Cauchy principal value of the improper integral $\int_{-\infty}^{\infty} \frac{(x+1) \cos x}{x^{2}+4 x+5} d x$. (Hint: Integrate a suitably chosen function on a suitable closed contour and use Jordan's Lemma).

Question $6(5+13 \mathrm{pts})$ a) Show that 0 is a simple pole of $f(z)=\frac{e^{i a z}-e^{i b z}}{z^{2}}$ where $(a \neq b)$ and calculate the residue of $f(z)$ at 0 .
b) Derive the integration formula

$$
\int_{0}^{\infty} \frac{\cos (a x)-\cos (b x)}{x^{2}} d x=\frac{\pi}{2}(b-a) \quad(a \geq 0, b \geq 0)
$$

by considering the contour integral of $f(z)=\frac{e^{i a z}-e^{i b z}}{z^{2}}$ on the indented path $\mathcal{C}_{R}+L_{1}+\mathcal{C}_{\rho}+$ L_{2} as shown in the figure. You will need to use the residue(s) of $f(z)$ in your calculations.

