Department of Mathematics

Q1. $(10+10$ pts. $)$ a) A $2 \times n$ rectangle is covered by smaller rectangles of dimensions 2×1 and 2×2. If the small pieces of rectangles can be red or yellow in color, find a recursion relation for a_{n} where a_{n} is the number of ways of covering the large rectangle with these small rectangles. (Give enough number of initial values. Do not solve the recurrence relation.)
b) Letters of the word CLASSROOM are shuffled randomly. Find the probability that two identical letters appear consecutively.

Q2. $(10+10$ pts. $)$ a) Let $A \subseteq X=\{1,2, \ldots, 20\}$ where $|A| \geq 12$. Show that there are two elements $a, b \in A$ such that $a+b=19$.
b) Let $B \subseteq Y=\{1,2, \ldots, 112\}$ where $|B|=85$. Show that there are at least 4 consecutive numbers in B.

Q3. $(10+10$ pts. $)$ a) A student reads a book of 100 pages in 9 days by reading at least one page everyday. Assuming that a whole number (integer) of pages are read each day, show that there are two consecutive days in which the student reads at least 21 pages in total.

Q3.b) Prove that any connected graph (with at least two vertices) which has no loops and no multiple edges has a pair of vertices u and v such that $\operatorname{deg}(u)=\operatorname{deg}(v)$ (degrees of the two vertices are equal).

Q4. $(10+10$ pts. $)$ a) For each pair of the 3 graphs below, show whether they are isomorphic or not.
b) Sketch at least 5 non-isomorphic trees with 6 vertices. (No explanation is asked, only sketch the trees.)

Q5. $(5 \times 4$ pts. $)$ a) If it exists, sketch a graph G_{1} which has 7 vertices $\left\{v_{1}, v_{2}, \ldots v_{7}\right\}$ and 20 edges, and the degrees of the vertices are given by $\operatorname{deg}\left(v_{k}\right)=k$ for $k=1,2, \ldots, 7$.
b) Sketch a simple graph (a graph with no loops and no multiple edges) G_{2} which has 5 vertices with degrees $\operatorname{deg}\left(v_{1}\right)=4, \operatorname{deg}\left(v_{2}\right)=3, \operatorname{deg}\left(v_{3}\right)=\operatorname{deg}\left(v_{4}\right)=2$, and $\operatorname{deg}\left(v_{5}\right)=1$.
c) Does the graph G_{2} in part (b) have an Euler circuit? If so, show the circuit by numbering its edges as e_{1}, e_{2}, \ldots etc. (e_{1} is the first edge of the circuit, e_{k} is the k th edge.)
d) Does the graph G_{2} in part (b) have an Euler path? If so, show the path by numbering its edges as e_{1}, e_{2}, \ldots etc. (e_{k} is the k th edge of the path.)
e) Is the graph G_{2} in part (b) a bipartite graph?

