${f M}$ E T U Department of Mathematics

	Inti					
	FINAL					
Code	: Math 116		Last Name	:		
Acad. Year Semester	: 2013-2014 : Spring		Name	:	Student No	:
Instructor	: G.E., T.K.,	M.K.,A.S	Department	:		
D /	. 06 06 001 1		Signature	:		
Date Time	: 06.06.2014 : 09:30		5 Questions on 4 Pages			
	: 120 minute	es		To	otal 80 Points	
1 2	3 4	5 6				

1.(15 pts.) It is given that the set $R = \{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} | a, b, c \in \mathbb{Z} \}$ is a ring with respect to matrix addition and matrix multiplication. Show that $I = \{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} | a, b \in \mathbb{Z} \}$ is an ideal of R.

2.(15 pts.) Let $R = \{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} | a, b, c \in \mathbb{Q} \}$ and $S = \mathbb{Q}$ (the set of rational numbers). Define the map $\alpha : R \longrightarrow S$ by setting $\alpha (\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}) = a - c$. Is α a ring homomorphism? Explain your reasoning.

- **3.** (15 pts.) Let $R = \{[0], [2], [4], [6], [8]\} \subset \mathbb{Z}_{10}$. It is given that R is a ring under addition and multiplication modulo 10.
- (i) Find the unity (multiplicative identity) of R, if any.

(ii) Is R an integral domain? Explain why.

(iii) Is R a field? Explain why.

- **4.** (15 pts.) In $\mathbb{Z}_5[x]$, let $f(x) = 3x^5 2x^4 x^3 x + 1$ and $g(x) = 2x^2 + 3x + 1$.
- (i) Find polynomials q(x) and r(x) in $\mathbb{Z}_5[x]$ such that f(x) = q(x)g(x) + r(x) where the degree of r(x) is at most 1.

(ii) Find gcd(f(x), g(x)).

5. (20 pts.) Let $G = \mathbb{Z}_{20}$ and let $H = \langle [4] \rangle$. (i) Find the distinct left cosets of the subgroup H in the group G .					
(ii) Find the order of the element $[6] + H$ in the quotient group G/H .					

(iii) Is G/H cyclic? Explain why.