Department of Mathematics

	Introduction to Basic Algebra Structures FINAL		
Code Acad. Year Semester Instructor	Math 116 : 2013-2014 : Spring : G.E.,T.K.,M.K.,A.S	Last Name : Name : Department : Signature $:$:
Time Duration	: 09:30 : 120 minutes	5 Questions on 4 Pages Total 80 Points	
	$]\left.^{4}\right\|^{5}$		

1.(15 pts.) It is given that the set $R=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \right\rvert\, a, b, c \in \mathbb{Z}\right\}$ is a ring with respect to matrix addition and matrix multiplication. Show that $I=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\}$ is an ideal of R.
2.(15 pts.) Let $R=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right] \right\rvert\, a, b, c \in \mathbb{Q}\right\}$ and $S=\mathbb{Q}$ (the set of rational numbers). Define the map $\alpha: R \longrightarrow S$
by setting $\alpha\left(\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]\right)=a-c$. Is α a ring homomorphism? Explain your reasoning.
3. ($\mathbf{1 5}$ pts.) Let $R=\{[0],[2],[4],[6],[8]\} \subset \mathbb{Z}_{10}$. It is given that R is a ring under addition and multiplication modulo 10 .
(i) Find the unity (multiplicative identity) of R, if any.
(ii) Is R an integral domain? Explain why.
(iii) Is R a field? Explain why.
4. (15 pts.) In $\mathbb{Z}_{5}[x]$, let $f(x)=3 x^{5}-2 x^{4}-x^{3}-x+1$ and $g(x)=2 x^{2}+3 x+1$.
(i) Find polynomials $q(x)$ and $r(x)$ in $\mathbb{Z}_{5}[x]$ such that $f(x)=q(x) g(x)+r(x)$ where the degree of $r(x)$ is at most 1.
(ii) Find $\operatorname{gcd}(f(x), g(x))$.
5. (20 pts.) Let $G=\mathbb{Z}_{20}$ and let $H=\langle[4]\rangle$.
(i)Find the distinct left cosets of the subgroup H in the group G.
(ii) Find the order of the element [6] $+H$ in the quotient group G / H.
(iii) Is G / H cyclic? Explain why.

