Math 115 Analytic Geometry Exercises

(Vectors)

1. Calculate the direction cosines of the vector $\vec{a} = (3, 12, 4)$.

2. Is it possible for a vector to make the following angles with the coordinate axes?

a)
$$\alpha = 45^{\circ}, \beta = 60^{\circ}, \gamma = 120^{\circ},$$

b)
$$\alpha = 45^{\circ}, \beta = 135^{\circ}, \gamma = 60^{\circ},$$

c)
$$\alpha = 90^{\circ}, \beta = 150^{\circ}, \gamma = 60^{\circ},$$

d)
$$\alpha = 30^{\circ}, \beta = 45^{\circ}, \gamma = 45^{\circ},$$

e)
$$\alpha = 45^{\circ}, \beta = 45^{\circ}, \gamma = 45^{\circ},$$

f)
$$\alpha = 30^{\circ}, \beta = 45^{\circ},$$

g)
$$\beta = 60^{\circ}, \gamma = 60^{\circ},$$

h)
$$\alpha = 150^{\circ}, \gamma = 30^{\circ},$$

where α, β and γ are the angles between the vector and x-axis, y-axis and z-axis respectively.

3. A vector makes angles $\alpha=120^\circ$ and $\gamma=45^\circ$ with the x-axis and z-axis respectively. What angle does it make with the y-axis?

4. Determine the components of the vector which makes equal angles with the coordinate axes and whose modulus (length) is 2.

5. Given that $|\vec{a}|=13,$ $|\vec{b}|=19$ and $|\vec{a}+\vec{b}|=24,$ find $|\vec{a}-\vec{b}|.$

6. Given that $|\vec{a}|=11,$ $|\vec{b}|=23$ and $|\vec{a}-\vec{b}|=30,$ find $|\vec{a}+\vec{b}|.$

7. Vectors \vec{a} and \vec{b} are perpendicular. If $|\vec{a}| = 5$ and $|\vec{b}| = 12$, compute $|\vec{a} + \vec{b}|$ and $|\vec{a} - \vec{b}|$.

8. Vectors \vec{a} and \vec{b} make an angle of measure 60°. If $|\vec{a}| = 3$ and $|\vec{b}| = 5$, compute $|\vec{a} + \vec{b}|$ and $|\vec{a} - \vec{b}|$.

9. Vectors \vec{a} and \vec{b} make an angle of measure 120°. If $|\vec{a}| = 3$ and $|\vec{b}| = 5$, compute $|\vec{a} + \vec{b}|$ and $|\vec{a} - \vec{b}|$.

10. What condition must be satisfied by \vec{a} and \vec{b} so that $\vec{a} + \vec{b}$ bisects the angle between \vec{a} and \vec{b} ?

11. What condition must be satisfied by \vec{a} and \vec{b} so that

a)
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|,$$

b)
$$|\vec{a} + \vec{b}| > |\vec{a} - \vec{b}|$$
,

c)
$$|\vec{a} + \vec{b}| < |\vec{a} - \vec{b}|$$
?

12. Let G be the centroid of the triangle ABC. Show that $\vec{GA} + \vec{GB} + \vec{GC} = 0$.

- 13. Determine the values of λ and μ for which the vectors $\vec{a} = -2\vec{i} + 3\vec{j} + \lambda \vec{k}$ and $\vec{b} = \mu \vec{i} + 6\vec{j} + 2\vec{k}$ are parallel?
- 14. Determine the components of the vector \vec{c} which bisects the angle between the vectors $\vec{a} = (2, -3, 6)$ and $\vec{b} = (-1, 2, -2)$ if $|\vec{c}| = 3\sqrt{42}$.
- 15. If \vec{u} and \vec{v} are non-parallel vectors, then every vector \vec{a} in the plane of \vec{u} and \vec{v} can be expressed in the form $\vec{a} = \alpha \vec{u} + \beta \vec{v}$. Prove that α and β are determined uniquely by \vec{u} and \vec{v} . (The representation of \vec{a} in the form $\vec{a} = \alpha \vec{u} + \beta \vec{v}$ is called the resolution of \vec{a} into components with respect to the basis $\{\vec{u}, \vec{v}\}$; the real numbers α and β are called the coefficients of this resolution.)
- 16. Given the vectors $\vec{u} = (2, -3)$ and $\vec{v} = (1, 2)$ in the plane. Find the resolution of the vector $\vec{a} = (9, 4)$ with respect to the basis $\{\vec{u}, \vec{v}\}$.
- 17. Given the vectors $\vec{a}=(3,-1)$, $\vec{b}=(1,-2)$ and $\vec{c}=(-1,7)$ in the plane. Determine the resolution of the vector $\vec{u}=\vec{a}+\vec{b}+\vec{c}$ with respect to the basis $\{\vec{a},\vec{b}\}$.
- 18. Given the vectors $\vec{u} = (3, -2, 1)$, $\vec{v} = (-1, 1, 2)$ and $\vec{w} = (2, 1, -3)$. Determine the resolution of the vector $\vec{a} = (11, -6, 5)$ with respect to the basis $\{\vec{u}, \vec{v}, \vec{w}\}$.
- 19. Vectors \vec{a} and \vec{b} are perpendicular and each of them makes an angle of measure $\pi/3$ with a certain vector \vec{c} . If $|\vec{a}|=3$, $|\vec{b}|=5$ and $|\vec{c}|=8$, calculate
 - a) $(3\vec{a} 2\vec{b})(\vec{b} + 3\vec{c})$,
 - b) $(\vec{a} + \vec{b} + \vec{c})^2$,
 - c) $(\vec{a} + 2\vec{b} 3\vec{c})^2$.
- 20. For any two vectors \vec{a} and \vec{b} , prove that

$$(\vec{a} + \vec{b})^2 + (\vec{a} - \vec{b})^2 = 2(\vec{a}^2 + \vec{b}^2).$$

Find the geometric interpretation of this equality.

- 21. Given the unit vectors \vec{a} \vec{b} and \vec{c} which satisfy the condition $\vec{a} + \vec{b} + \vec{c} = 0$. Compute $\vec{a}\vec{b} + \vec{b}\vec{c} + \vec{c}\vec{a}$.
- 22. If $\vec{a}+\vec{b}+\vec{c}=0$, $|\vec{a}|=3$, $|\vec{b}|=1$ and $|\vec{c}|=4$, evaluate $\vec{a}\vec{b}+\vec{b}\vec{c}+\vec{c}\vec{a}$.
- 23. Measure of the angle between any two of the vectors \vec{a} , \vec{b} , \vec{c} is $\pi/3$ radians. If $|\vec{a}| = 4$, $|\vec{b}| = 2$ and $|\vec{c}| = 6$, evaluate $|\vec{a} + \vec{b} + \vec{c}|$.
- 24. Given that $|\vec{a}| = 3$ and $|\vec{b}| = 5$. Determine the value of α so that the vectors $\vec{a} + \alpha \vec{b}$ and $\vec{a} \alpha \vec{b}$ are perpendicular.
- 25. A vector \vec{u} is perpendicular to the vectors $\vec{a} = 3\vec{i} + 2\vec{j} + 2\vec{k}$ and $\vec{b} = 18\vec{i} 22\vec{j} 5\vec{k}$ and makes an obtuse angle with the y-axis. Find the components of \vec{u} if $|\vec{u}| = 14$.

- 26. Given the vectors $\vec{a} = (2, -1, 3)$, $\vec{b} = (1, -3, 2)$ and $\vec{c} = (3, 2, -4)$. Find the vector \vec{x} satisfying $\vec{x} \cdot \vec{a} = -5$, $\vec{x} \cdot \vec{b} = -11$, $\vec{x} \cdot \vec{c} = 20$.
- 27. Given the vectors $\vec{a}=(1,-3,4)$, $\vec{b}=(3,-4,2)$ and $\vec{c}=(-1,1,4)$. Find the projection of $\vec{a}+\vec{b}$ on \vec{c} .
- 28. If \vec{a} and \vec{b} are perpendicular and $|\vec{a}|=3,$ $|\vec{b}|=5,$ find
 - a) $|(\vec{a} + \vec{b}) \times (\vec{a} \vec{b})|$,
 - b) $|(3\vec{a} \vec{b}) \times ((\vec{a} 2\vec{b}))|$
- 29. What condition must be satisfied by \vec{a} and \vec{b} so that $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are collinear (parallel)?
- 30. For any two vectors \vec{a} and \vec{b} , prove that
 - a) $|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$,
 - b) $|\vec{a} \times \vec{b}|^2 \le |\vec{a}|^2 |\vec{b}|^2$.
- 31. If $\vec{a} + \vec{b} + \vec{c} = 0$, prove that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$.
- 32. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, prove that $\vec{a} \vec{d}$ and $\vec{b} \vec{c}$ are parallel.
- 33. Given the points A(1,2,0), B(3,0,-3) and C(5,2,6). Compute the area of the triangle ABC.
- 34. Given the vectors $\vec{u} = (2, -3, 1)$, $\vec{v} = (-3, 1, 2)$ and $\vec{w} = (1, 2, 3)$. Find $(\vec{u} \times \vec{v}) \times \vec{w}$ and $\vec{u} \times (\vec{v} \times \vec{w})$.
- 35. For any three vectors \vec{u} , \vec{v} and \vec{w} , prove that $(\vec{u} \times \vec{v}) \times \vec{w} = (\vec{u} \cdot \vec{w})\vec{v} (\vec{v} \cdot \vec{w})\vec{u}$.
- 36. For any three vectors \vec{u} , \vec{v} and \vec{w} , prove that $\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} (\vec{u} \cdot \vec{v})\vec{w}$.
- 37. What conditions must be satisfied by \vec{u} , \vec{v} and \vec{w} so that $(\vec{u} \times \vec{v}) \times \vec{w} = \vec{u} \times (\vec{v} \times \vec{w})$?
- 38. For \vec{u} , \vec{v} , \vec{w} , \vec{z} , prove the following identities

 a) $\vec{u} \times (\vec{v} \times \vec{w}) + \vec{v} \times (\vec{w} \times \vec{u}) + \vec{w} \times (\vec{u} \times \vec{v}) = 0$,

 b) $(\vec{u} \times \vec{v}) \cdot (\vec{w} \times \vec{z}) = (\vec{u} \cdot \vec{w})(\vec{v} \cdot \vec{z}) (\vec{u} \cdot \vec{z})(\vec{v} \cdot \vec{w})$,
 - c) $(\vec{u} \times \vec{v}) \cdot (\vec{w} \times \vec{z}) + (\vec{u} \times \vec{w}) \cdot (\vec{v} \times \vec{z}) + (\vec{u} \times \vec{z}) \cdot (v \times \vec{w}) = 0,$
 - $\mathrm{d})\vec{u}\times(\vec{v}\times(\vec{w}\times\vec{z}))=(\vec{v}\cdot\vec{z})(\vec{u}\times\vec{w})-(\vec{v}\cdot\vec{w})(\vec{u}\times\vec{z}).$
- 39. For any three vectors \vec{a} , \vec{b} and \vec{c} show that

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b}$$

and define $[\vec{a}, \vec{b}, \vec{c}] = (\vec{a} \times \vec{b}) \cdot \vec{c}$.

40. Show that the vectors \vec{a} , \vec{b} , \vec{c} are right handed if and only if $[\vec{a}, \vec{b}, \vec{c}] > 0$.

41. Prove that for any \vec{a} , \vec{b} , \vec{c} ,

$$[(\vec{a} + \vec{b}), (\vec{b} + \vec{c}), (\vec{c} + \vec{a})] = 2[\vec{a}, \vec{b}, \vec{c}].$$

- 42. If $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$, prove that $\vec{a}, \vec{b}, \vec{c}$ are coplanar.
- 43. Show that \vec{a} , \vec{b} , \vec{c} are coplanar if and only if $[\vec{a}, \vec{b}, \vec{c}] = 0$.
- 44. Prove that the points A(1, 2, -1), B(0, 1, 5), C(-1, 2, 1) and D(2, 1, 3) lie in the same plane.

Answers

3)
$$60^{\circ}$$
 4) $(\frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3})$ 5) 22 6) 20 7) $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| = 13$
8) $|\vec{a} + \vec{b}| = 7$ and $|\vec{a} - \vec{b}| = \sqrt{19}$ 9) $|\vec{a} + \vec{b}| = \sqrt{19}$ and $|\vec{a} - \vec{b}| = 7$ 10) $|\vec{a}| = |\vec{b}|$ 11) a) vectors are perpendicular, b) the angle between the vectors is acute, c) the angle between the vectors is obtuse. 12) Use the fact that $3\vec{G} = \vec{A} + \vec{B} + \vec{C}$ 13) $\lambda = 1$, $\mu = -4$ 14) $(-3, 15, 12)$ 16) $\vec{a} = 2\vec{u} + 5\vec{v}$ 17) $\vec{u} = 2\vec{a} - 3\vec{b}$ 18) $\vec{a} = \frac{19}{5}\vec{u} + \frac{6}{5}\vec{v} + \frac{2}{5}\vec{w}$ 19) a) $-79/2$ b) 177 c) 403 21) $-3/2$ 22) -13 23) 10 24) $3/5$ 25) $(-4, -6, 12)$ 26) $(2, 3, -2)$ 27) $(-13/18, 13/18, 26/9)$ 28) a) 30 b) 75 29) $|\vec{a}| = |\vec{b}|$ 33) 14

Math 115

1.

- (a) Write an equation for the line ℓ through the points (-1, -2) and (11, -6).
- (b) Write an equation for the line m through the point (13,0) perpendicular to ℓ .
- (c) If n has slope 3 and y-intercept 1 find an equation for the line n.
- (d) If A(-1,-2), B(11,-6) and C(13,0) are three consecutive vertices of a parallelogram ABCD find the length of the diagonal \overline{BD} without finding D. (Explain)
- 2. Sketch the graphs of the given relations in the xy-coordinate plane.
- (a) $R = \{(x, y) \mid y \ge x^2 \text{ and } y \le x + 2\}.$
- **(b)** $S = \{(r, \theta) \mid 0 \le \theta \le \frac{\pi}{2}, \ r = -2\}.$
- (c) $T = \{(r, \theta) \mid 0 \le r \le 2 \sin \theta, \frac{\pi}{2} \le \theta \le \frac{3\pi}{4} \}.$
- 3. Plot the following points: $(-3, -\pi/6)$, $(2, 7\pi/4)$, $(-1, \pi/3)$ in the polar plane.
- 4. Let P be a point in the plane with a pair of polar coordinates $(-2, 3\pi/4)$.
- (a) Find the Cartesian coordinates of P.
- (b) Find a polar equation for the line ℓ through $(-2, 3\pi/4)$ perpendicular to the line $\theta = \pi/2$, i.e. the y-axis.

5.

- (a) Assume that $\bar{x}\bar{y}$ coordinate system is a translation of the xy-coordinate system. If the origin \bar{O} of the $\bar{x}\bar{y}$ coordinate system has xy-coordinates (-3,4) express xy-coordinates (x,y) of a point P in terms of $\bar{x}\bar{y}$ coordinates (\bar{x},\bar{y}) of P.
- (b) Assume $\tilde{x}\tilde{y}$ -coordinate system is obtained from the $\bar{x}\bar{y}$ -coordinate system by a rotation through $\alpha = \pi/6$. Express $\bar{x}\bar{y}$ -coordinates (\bar{x},\bar{y}) of a point P in terms of $\tilde{x}\tilde{y}$ coordinates (\tilde{x},\tilde{y}) of P.
- (c) If $\ell = \{(x, y) \mid y = 5\}$ then express C in terms of $\tilde{x}\tilde{y}$ -coordinates.
- 6. Assume that $\bar{x}\bar{y}$ coordinate system is obtained from the xy-coordinate system by a rotation through $\alpha = tan^{-1}(3/4)$.
- (a) Write $cos(\alpha)$ and $sin(\alpha)$.
- (b) Express x and y in terms of \bar{x} and \bar{y} .
- (c) Let ℓ be the line 3x 4y + 50 = 0. What is the equation of ℓ in the $\bar{x}\bar{y}$ coordinate system?
- (d) If a point P has xy coordinates (4,3) find its $\bar{x}\bar{y}$ –coordinates.
- (e) If possible, use (d) to find the distance from P to the \bar{y} -axis.