Analytic Geometry Exercises Lines, Planes, Distances Prepared by Tolga Karayayla

1. Find all points on the line 3x - 5y = 12 which are at a distance of 3 units from the line 4x - 3y = 2.

2. Find all points on the circle $x^2 + y^2 - 10x + 2y = 75$ whose distance from the line x + y = 6 is $2\sqrt{2}$.

3. What is the distance between the point P(2,3,5) and the plane *T* given by x - 2y + 4z = 23? Find the point *Q* on *T* which is closest to *P*.

4. Find all points on the line $L : \vec{P} = (x, y, z) = (4 + t, 5 - t, 7 + 2t), t \in \mathbb{R}$ which are at a distance of 5 units from the plane $2x - 4y + 5z = \sqrt{5}$.

5. Find the distance from P(3,4,7) to the line $L : \vec{P} = (x, y, z) = (1 + t, 1 + 2t, 3 + 3t), t \in \mathbb{R}$, and find the point $Q \in L$ which is the closest point to *P* among all points on *L*.

6. Let two lines L_1 and L_2 be given by the symmetric equations

$$L_1: x = \frac{3-y}{2} = \frac{2z+1}{4}$$
 and $L_2: \frac{x+3}{4} = \frac{z-5}{8}$, $y = 2$.

a) What are direction vectors of L_1 and L_2 ?

b) Show that L_1 and L_2 are skew lines.

c) Write down the equations of the two planes T_1 and T_2 such that $L_1 \subset T_1$, $L_2 \subset T_2$ and $T_1//T_2$.

d) Use equation of T_1 you found in part (c) and a chosen point $P_2 \in L_2$ to calculate the distance between L_1 and L_2 .

e) Can we generalize the situation in part (c) to any pair of skew lines L_1 and L_2 in \mathbb{R}^3 ? In other words, if L_1 and L_2 are skew lines, can we find planes T_1 and T_2 such that $L_1 \subset T_1$, $L_2 \subset T_2$ and $T_1//T_2$? Are these planes T_1 and T_2 unique?

7. Let two lines L_1 and L_2 be given by

 $L_1: \vec{r_1}(t) = (x, y, z) = (2+t, 3-t, 5+t), t \in \mathbb{R} \text{ and } L_2: \vec{r_2}(t) = (x, y, z) = (1+2t, 1+3t, 1+4t), t \in \mathbb{R}$

a) Show that L_1 and L_2 are skew lines.

b) Find the distance between L_1 and L_2 .

c) Find the points $P \in L_1$ and $Q \in L_2$ such that the distance between P and Q is the distance d between L_1 and L_2 (P and Q are the closest points to each other while one is on L_1 and the other is on L_2).

8. For two lines L_1 and L_2 given by $L_1 : \vec{P} = (x, y, z) = \vec{P_1} + t\vec{v_1}$, $t \in \mathbb{R}$ and $L_2 : \vec{P} = (x, y, z) = \vec{P_2} + t\vec{v_2}$, $t \in \mathbb{R}$, when L_1 and L_2 are skew lines, the distance *d* between L_1

and L_2 is given by the formula

$$d = \frac{|P_1 P_2 \cdot \vec{n}|}{|\vec{n}|} = \frac{|P_1 P_2 \cdot (\vec{v}_1 \times \vec{v}_2)|}{|\vec{v}_1 \times \vec{v}_2|}$$

where $\vec{n} = \vec{v}_1 \times \vec{v}_2$ (Indeed, \vec{n} is a normal vector of the planes $T_1 / / T_2$ such that $L_1 \subset T_1$ and $L_2 \subset T_2$ for the skew lines L_1 and L_2).

a) Why doesn't this formula work when the lines L_1 and L_2 are parallel or coincident? b) Explain why the distance *d* between two skew lines is always positive. (What can you say about two lines L_1 and L_2 when the distance between them is 0?)

c) If $\vec{v_1}$ and $\vec{v_2}$ are not parallel vectors, then $\vec{n} = \vec{v_1} \times \vec{v_2} \neq \vec{0}$. In this case, if we find d = 0 from the above formula, what is the conclusion about the lines L_1 and L_2 (are they coincident, parallel, skew or intersecting)?

d) If $\vec{v_1}$ and $\vec{v_2}$ are not parallel vectors, in the formula given above d = 0 if and only if $P_1 P_2 \cdot (\vec{v_1} \times \vec{v_2}) = 0$. Combine this observation and your conclusion in part (c) to obtain the following criterion:

If two lines L_1 and L_2 are not parallel or coincident (that is, if their direction vectors \vec{v}_1 and \vec{v}_2 are not parallel vectors), then L_1 and L_2 are intersectiong lines if and only if $P_1 P_2 \cdot (\vec{v}_1 \times \vec{v}_2) = 0$ where $P_1 \in L_1$ and $P_2 \in L_2$ are two points arbitrarily chosen from the lines L_1 and L_2 .

(Note that $P_1 P_2 \cdot (\vec{v_1} \times \vec{v_2}) = 0$ means that the triple product of these three vectors is 0, and as a consequence, the vectors $P_1 P_2$, $\vec{v_1}$ and $\vec{v_2}$ are coplanar (they lie on the same plane).)

9. Find the distance between the lines $L_1 : \vec{P} = (x, y, z) = (3 + t, 2 - 5t, 3t), t \in \mathbb{R}$ and $L_2 : x + 1 = \frac{1 - 3y}{15} = \frac{z + 8}{3}$.

10.a) Let *L* be a line in \mathbb{R}^2 and P_0 be a point in \mathbb{R}^2 such that $P_0 \notin L$. Characterize all lines \tilde{L} in \mathbb{R}^2 such that \tilde{L} passes through P_0 and \tilde{L} intersets *L*. Is it true that the set of all such lines \tilde{L} is the set of all lines through P_0 ?

b) Let *L* be a line in \mathbb{R}^3 and P_0 be a point in \mathbb{R}^3 such that $P_0 \notin L$. Characterie all lines \tilde{L} such that \tilde{L} passes through P_0 and \tilde{L} intersects *L*. Is the set of all such lines \tilde{L} equal to the set of lines on a certain plane which all pass through P_0 , or do we need to exclude certain lines from this set? Which plane is this, and which line(s) should be excluded? What is the union of all such lines \tilde{L} as a subset of \mathbb{R}^3 ?.

11. Let A = (1,0,2) and L_1 be the line given by $L_1 : \vec{P} = (x, y, z) = (1+3t, 1+4t, 1+5t)$, $t \in \mathbb{R}$. For each line L_2 given below, find a line L (if such a line L exists at all) such that $A \in L$ and L intersects both of the lines L_1 and L_2 .

a) $L_2: \vec{P} = (x, y, z) = (5 + 2t, 5 + t, 3 + 2t), t \in \mathbb{R}$. (There is a unique line *L* in this case.) b) $L_2: \vec{P} = (x, y, z) = (1 + 3t, -1 + 5t, 5 + 2t), t \in \mathbb{R}$. (No such line *L* exists in this case.) c) $L_2: \vec{P} = (x, y, z) = (2, 3, 4) + t(4, 5, 7), t \in \mathbb{R}$. (No such line *L* exists in this case).

12. When a line *L* in \mathbb{R}^3 is given (by a vector equation, or parametric equations for example), how can you describe it as the intersection of two planes? You can do it in nfinitely many different ways, but a very fast way of finding two such planes is to look

at the symmetric equations of the line. Let $L: \frac{x+x_0}{v_1} = \frac{y-y_0}{v_2} = \frac{z-z_0}{v_3}$ be symmetric equations of *L* (Note that if one or two of v_1 , v_2 or v_3 are 0, symmetric equations have other forms). From these equations, can you immediately write down equations of two planes which both contain *L*? What are they?

If one or two of the components of a direction vector $\vec{v} = (v_1, v_2, v_3)$ of *L* are zero, the form of symmetric equations of *L* is different. For example, if $v_2 = 0$, the symmetric equations of *L* are *L* : $\frac{x-x_0}{v_1} = \frac{z-z_0}{v_3}$, $y = y_0$. What are equations of two distinct planes each contining the line *L*?

Comments and hints for some of the problems

Problem 1. You should find 2 such points.

Problem 2. You should find 4 points in your answer.

Problem 4. You should find 2 points.

Problem 7. (part (c)) The quickest solution is by expressing *P* and *Q* in terms of parameters *t* (for *P*) and *s* (for *Q*) and then obtaining a system of 2 equations in 2 unknowns *s* and *t* using certain perpendicularity properties about *P*, *Q* and direction vectors of L_1 and L_2 .

Problem 11. Note that one approach to solve this question is as follows: If such a line *L* exists, let $L \cap L_1 = B$ and $L \cap L_2 = C$. Using equations of L_1 and L_2 , *B* can be written in terms of *t* and *C* can be written in terms of *s* where *t* and *s* are two parameters. Then, *A*, *B*, *C* are on the same line *L* iff (if and only if) $\vec{AB} \times \vec{AC} = \vec{0}$. This completely translates the problem to the solution of a system of 3 equations in two unknowns *s* and *t*. But the equations are not linear in *s* and *t*, they are of the form ast+bs+ct+d=0. Such a system can be solved systematically, but a more geometric approach for the solution is as described:

Consider the plane *T* containing *A* and L_1 . If *L* exists, then *L* must be on *T* (why?). If L_2 does not lie on *T* and $Q = L \cap L_2$, then $Q = L_2 \cap T$ (why?). Draw a picture illustrating L_1 , L_2 , *A* and *T*. Then try to solve the problem using these hints. You will need to write down the equation of *T*. You should also be careful when you find an intersection point *C* of *T* and L_2 . Even if there is an intersection point *C*, it does not mean that *L* exists (see part (b) of the question). What do you need to check after finding *C* to conclude that *L* exists?