1. Find all points on the line $3 x-5 y=12$ which are at a distance of 3 units from the line $4 x-3 y=2$.
2. Find all points on the circle $x^{2}+y^{2}-10 x+2 y=75$ whose distance from the line $x+y=6$ is $2 \sqrt{2}$.
3. What is the distance between the point $P(2,3,5)$ and the plane T given by $x-$ $2 y+4 z=23$? Find the point Q on T which is closest to P.
4. Find all points on the line $L: \vec{P}=(x, y, z)=(4+t, 5-t, 7+2 t), t \in \mathbb{R}$ which are at a distance of 5 units from the plane $2 x-4 y+5 z=\sqrt{5}$.
5. Find the distance from $P(3,4,7)$ to the line $L: \vec{P}=(x, y, z)=(1+t, 1+2 t, 3+3 t)$, $t \in \mathbb{R}$, and find the point $Q \in L$ which is the closest point to P among all points on L.
6. Let two lines L_{1} and L_{2} be given by the symmetric equations

$$
L_{1}: x=\frac{3-y}{2}=\frac{2 z+1}{4} \text { and } L_{2}: \frac{x+3}{4}=\frac{z-5}{8}, y=2 .
$$

a) What are direction vectors of L_{1} and L_{2} ?
b) Show that L_{1} and L_{2} are skew lines.
c) Write down the equations of the two planes T_{1} and T_{2} such that $L_{1} \subset T_{1}, L_{2} \subset T_{2}$ and $T_{1} / / T_{2}$.
d) Use equation of T_{1} you found in part (c) and a chosen point $P_{2} \in L_{2}$ to calculate the distance between L_{1} and L_{2}.
e) Can we generalize the situation in part (c) to any pair of skew lines L_{1} and L_{2} in \mathbb{R}^{3} ? In other words, if L_{1} and L_{2} are skew lines, can we find planes T_{1} and T_{2} such that $L_{1} \subset T_{1}, L_{2} \subset T_{2}$ and $T_{1} / / T_{2}$? Are these planes T_{1} and T_{2} unique?
7. Let two lines L_{1} and L_{2} be given by
$L_{1}: \vec{r}_{1}(t)=(x, y, z)=(2+t, 3-t, 5+t), t \in \mathbb{R}$ and $L_{2}: \vec{r}_{2}(t)=(x, y, z)=(1+2 t, 1+3 t, 1+4 t), t \in \mathbb{R}$
a) Show that L_{1} and L_{2} are skew lines.
b) Find the distance between L_{1} and L_{2}.
c) Find the points $P \in L_{1}$ and $Q \in L_{2}$ such that the distance between P and Q is the distance d between L_{1} and L_{2} (P and Q are the closest points to each other while one is on L_{1} and the other is on L_{2}).
8. For two lines L_{1} and L_{2} given by $L_{1}: \vec{P}=(x, y, z)=\vec{P}_{1}+t \vec{\nu}_{1}, t \in \mathbb{R}$ and $L_{2}: \vec{P}=$ $(x, y, z)=\vec{P}_{2}+t \vec{v}_{2}, t \in \mathbb{R}$, when L_{1} and L_{2} are skew lines, the distance d between L_{1}
and L_{2} is given by the formula

$$
d=\frac{\left|\overrightarrow{P_{1} P_{2}} \cdot \vec{n}\right|}{|\vec{n}|}=\frac{\left|\overrightarrow{P_{1} P_{2}} \cdot\left(\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}\right)\right|}{\left|\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}\right|}
$$

where $\vec{n}=\vec{v}_{1} \times \vec{v}_{2}$ (Indeed, \vec{n} is a normal vector of the planes $T_{1} / / T_{2}$ such that $L_{1} \subset T_{1}$ and $L_{2} \subset T_{2}$ for the skew lines L_{1} and L_{2}).
a) Why doesn't this formula work when the lines L_{1} and L_{2} are parallel or coincident? b) Explain why the distance d between two skew lines is always positive. (What can you say about two lines L_{1} and L_{2} when the distance between them is 0 ?)
c) If \vec{v}_{1} and \vec{v}_{2} are not parallel vectors, then $\vec{n}=\vec{v}_{1} \times \vec{v}_{2} \neq \overrightarrow{0}$. In this case, if we find $d=0$ from the above formula, what is the conclusion about the lines L_{1} and L_{2} (are they coincident, parallel, skew or intersecting)?
d) If \vec{v}_{1} and \vec{v}_{2} are not parallel vectors, in the formula given above $d=0$ if and only if $P_{1} P_{2} \cdot\left(\vec{v}_{1} \times \vec{v}_{2}\right)=0$. Combine this observation and your conclusion in part (c) to obtain the following criterion:
If two lines L_{1} and L_{2} are not parallel or coincident (that is, if their direction vectors $\vec{\nu}_{1}$ and $\vec{\nu}_{2}$ are not parallel vectors), then L_{1} and L_{2} are intersectiong lines if and only if $P_{1} P_{2} \cdot\left(\overrightarrow{\nu_{1}} \times \vec{v}_{2}\right)=0$ where $P_{1} \in L_{1}$ and $P_{2} \in L_{2}$ are two points arbitrarily chosen from the lines L_{1} and L_{2}.
(Note that $\overrightarrow{P_{1} P_{2}} \cdot\left(\vec{v}_{1} \times \vec{v}_{2}\right)=0$ means that the triple product of these three vectors is 0 , and as a consequence, the vectors $\overrightarrow{P_{1} P_{2}}, \overrightarrow{v_{1}}$ and $\vec{\nu}_{2}$ are coplanar (they lie on the same plane).)
9. Find the distance between the lines $L_{1}: \vec{P}=(x, y, z)=(3+t, 2-5 t, 3 t), t \in \mathbb{R}$ and $L_{2}: x+1=\frac{1-3 y}{15}=\frac{z+8}{3}$.
10.a) Let L be a line in \mathbb{R}^{2} and P_{0} be a point in \mathbb{R}^{2} such that $P_{0} \notin L$. Characterize all lines \tilde{L} in \mathbb{R}^{2} such that \tilde{L} passes through P_{0} and \tilde{L} intersets L. Is it true that the set of all such lines \tilde{L} is the set of all lines through P_{0} ?
b) Let L be a line in \mathbb{R}^{3} and P_{0} be a point in \mathbb{R}^{3} such that $P_{0} \notin L$. Characterie all lines \tilde{L} such that \tilde{L} passes through P_{0} and \tilde{L} intersects L. Is the set of all such lines \tilde{L} equal to the set of lines on a certain plane which all pass through P_{0}, or do we need to exclude certain lines from this set? Which plane is this, and which line(s) should be excluded? What is the union of all such lines \tilde{L} as a subset of \mathbb{R}^{3} ?.
11. Let $A=(1,0,2)$ and L_{1} be the line given by $L_{1}: \vec{P}=(x, y, z)=(1+3 t, 1+4 t, 1+5 t)$, $t \in \mathbb{R}$. For each line L_{2} given below, find a line L (if such a line L exists at all) such that $A \in L$ and L intersects both of the lines L_{1} and L_{2}.
a) $L_{2}: \vec{P}=(x, y, z)=(5+2 t, 5+t, 3+2 t), t \in \mathbb{R}$. (There is a unique line L in this case.)
b) $L_{2}: \vec{P}=(x, y, z)=(1+3 t,-1+5 t, 5+2 t), t \in \mathbb{R}$. (No such line L exists in this case.)
c) $L_{2}: \vec{P}=(x, y, z)=(2,3,4)+t(4,5,7), t \in \mathbb{R}$. (No such line L exists in this case).
12. When a line L in \mathbb{R}^{3} is given (by a vector equation, or parametric equations for example), how can you describe it as the intersection of two planes? You can do it in nfinitely many different ways, but a very fast way of fnding two such planes is to look
at the symmetric equations of the line. Let $L: \frac{x+x_{0}}{v_{1}}=\frac{y-y_{0}}{v_{2}}=\frac{z-z_{0}}{v_{3}}$ be symmetric equations of L (Note that if one or two of ν_{1}, v_{2} or v_{3} are 0 , symmetric equations have other forms). From these equations, can you immediately write down equations of two planes which both contain L ? What are they?
If one or two of the components of a direction vector $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ of L are zero, the form of symmetric equations of L is different. For example, if $\nu_{2}=0$, the symmetric equations of L are $L: \frac{x-x_{0}}{\nu_{1}}=\frac{z-z_{0}}{\nu_{3}}, y=y_{0}$. What are equations of two distinct planes each contining the line L ?

Comments and hints for some of the problems

Problem 1. You should find 2 such points.
Problem 2. You should find 4 points in your answer.
Problem 4. You should find 2 points.
Problem 7. (part (c)) The quickest solution is by expressing P and Q in terms of parameters t (for P) and s (for Q) and then obtaining a system of 2 equations in 2 unknowns s and t using certain perpendicularity properties about P, Q and direction vectors of L_{1} and L_{2}.
Problem 11. Note that one approach to solve this question is as follows: If such a line L exists, let $L \cap L_{1}=B$ and $L \cap L_{2}=C$. Using equations of L_{1} and L_{2}, B can be written in terms of t and C can be written in terms of s where t and s are two parameters. Then, A, B, C are on the same line L iff (if and only if) $\overrightarrow{A B} \times \overrightarrow{A C}=\overrightarrow{0}$. This completely translates the problem to the solution of a system of 3 equations in two unknowns s and t. But the equations are not linear in s and t, they are of the form $a s t+b s+c t+d=0$. Such a system can be solved systematically, but a more geometric approach for the solution is as described:
Consider the plane T containing A and L_{1}. If L exists, then L must be on T (why?). If L_{2} does not lie on T and $Q=L \cap L_{2}$, then $Q=L_{2} \cap T$ (why?). Draw a picture illustrating L_{1}, L_{2}, A and T. Then try to solve the problem using these hints. You will need to write down the equation of T. You should also be careful when you find an intersection point C of T and L_{2}. Even if there is an intersection point C, it does not mean that L exists (see part (b) of the question). What do you need to check after finding C to conclude that L exists?

