METU

Department of Mathematics

. F	Analytic Geometry Final Exam	
Code : Math 115 Acad. Year : 2017-2018 Semester : Fall Coordinator: E. Coskun	Last Name : Name : Student N Department : Signature :	0:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 Questions on 4 Pages Total 100 Points	

- 1. (5+5+5+5 pts.) Consider the hyperbola whose foci are F(4,4), F'(-4,-4) and eccentricity is e=2.
- (a) Find the center C.

(b) Write an equation for the axis ℓ of the hyperbola.

(c) Find the intersections G and G' of ℓ with the directrices d and d', respectively.

$$G = \frac{1}{e^2} = \frac{1}{4} (4,4) = (1,1)$$

$$G'$$
 and G' are symmetric with respect to the origin, so $G' = (-1, -1)$.

(d) Find the xy-equation of the hyperbola.

$$d: \frac{y-1}{x-1} = -1 \Rightarrow y+x-2 = 0$$

$$\frac{|PF|^{2}}{|Pd|^{2}} = e^{2} = \frac{(x-4)^{2} + (y-4)^{2}}{\left(\frac{y+x-2}{\sqrt{1^{2}+1^{2}}}\right)^{2}} = 2^{2}$$

$$=) y^2 + x^2 + 4xy - 24 = 0.$$

2. (3+2+3+6+6 pts.) Let S be a surface with the equation $4(x-1)^2 + 9(z-3)^2 = (y-4)^2$. (a) Identify the surface S. What type of a quadratic surface is S? (Explain)

Solution: $4(x-1)^2 + 9(z-3)^2 = (y-4)^2$ can be rewritten as $\frac{(x-1)^2}{9} + \frac{(z-3)^2}{4} = \frac{(y-4)^2}{26}$ which is an equation of an elliptic cone.

(b) Describe the plane section of S by the plane $\mathcal{P}_1: y=4$, i.e. find $S\cap \mathcal{P}_1$.

Solution: Insert
$$y = 4$$
 into $\frac{(x-1)^2}{9} + \frac{(z-3)^2}{4} = \frac{(y-4)^2}{36}$ to get $\frac{(x-1)^2}{9} + \frac{(z-3)^2}{4} = 0$ which implies

x = 1, z = 3. Thus $S \cap \mathcal{P}_1 = \{(1, 4, 3)\}.$

(c) Describe the plane section of S by the plane $\mathcal{P}_2: x=1$.

<u>Solution</u>: Insert x = 1 into $4(x-1)^2 + 9(z-3)^2 = (y-4)^2$ to get $z = 3 \pm \frac{1}{3}(y-4)$. In other words $S \cap \mathcal{P}_2$ consists of two intersecting lines $z = \frac{5+y}{3}$ and $z = \frac{13-y}{3}$.

Write the type and find the eccentricity e of the conic C which is the intersection of the given surface with each of the following planes (In each case write the equation of the conic in its simplest form):

(d)
$$y = 6$$

Solution: Insert y = 6 into $4(x-1)^2 + 9(z-3)^2 = (y-4)^2$ which implies $(x-1)^2 + \frac{(z-3)^2}{4/9} = 1$. This is an ellipse equation with a=1 and b=2/3. Since $b=a\sqrt{1-e^2}$ we have $e=\sqrt{5}/3$.

(e)
$$z = 4$$

Solution: Insert z = 4 into $4(x-1)^2 + 9(z-3)^2 = (y-4)^2$ which implies $\frac{(y-4)^2}{9} - \frac{(x-1)^2}{9/4} = 1$. This is a hyperbola equation with a=3 and b=3/2. Since $b=a\sqrt{e^2-1}$ we have $e=\sqrt{5}/2$

3. (14+6 pts.) Let S be a conic with the equation $2x^2 + 2\sqrt{2}xy + 3y^2 = 1$.

(a) Find $\cos \alpha$ and $\sin \alpha$ such that $0 < \alpha < \pi/2$ and when xy-coordinate system is rotated by α radians to obtain $\bar{x}\bar{y}$ -coordinate system, the equation of S has no $\bar{x}\bar{y}$ -term. Moreover write down x and y in terms

of
$$\bar{x}$$
 and \bar{y} .

 $A = 2$, $2B = 2\sqrt{2}$, $C = 3$. $Co + (2\alpha) = \frac{A - C}{2B} = \frac{2 - 3}{2\sqrt{2}} = \frac{-1}{2\sqrt{2}}$, $0 < \alpha < \frac{\pi}{2}$

$$\sin^2(2\alpha) = \frac{1}{\csc^2(2\alpha)} = \frac{1}{1+\cot^2(2\alpha)} \Rightarrow \sin(2\alpha) = \frac{2\sqrt{2}}{3}$$
(since $0 < \alpha < \frac{\pi}{2}$, $\sin(2\alpha) \ge 0$)

$$\cos(2\alpha) = \cot(2\alpha).\sin(2\alpha) = \frac{-1}{3}$$

$$0(\alpha < \frac{\pi}{2} \Rightarrow) \sin(\alpha > 0), \cos(\alpha > 0) \Rightarrow \sin(\alpha = \frac{\pi}{2})$$

$$0(\alpha < \frac{\pi}{2} \Rightarrow) \sin(\alpha > 0), \cos(\alpha > 0) \Rightarrow \sin(\alpha = \frac{\pi}{2})$$

Rotation:
$$y = \sin \alpha$$
. $\overline{x} + \cos \alpha$. $\overline{y} \Rightarrow y = \sqrt{2} \overline{x} + \sqrt{3}$

(b) Write down the equation of S in terms of the
$$(\bar{x}, \bar{y})$$
 coordinates.

$$2x^{2} + 2\sqrt{2}xy + 3y^{2} = 1 \iff 2\left(\frac{\overline{x} - \sqrt{2}y}{\sqrt{3}}\right)^{2} + 2\sqrt{2}\left(\frac{\overline{x} - \sqrt{2}y}{\sqrt{3}}\right)\left(\frac{2\overline{x} + \overline{y}}{\sqrt{3}}\right)$$

$$+ 3\left(\frac{\sqrt{2}\overline{x} + \overline{y}}{\sqrt{3}}\right)^{2} = 1$$

$$(=) \frac{1}{3} (12 \bar{x}^2 + 0.\bar{x}\bar{y} + 3\bar{y}^2) = 1$$

4. (6+7+7 pts.) Let ℓ be a line and \mathcal{P} be a plane in 3-space. P and Q are said to be symmetric (partners of each other) about the line ℓ if ℓ is a perpendicular bisector of the segment [PQ]. P and Q are said to be symmetric (partners of each other) about the plane \mathcal{P} if \mathcal{P} is perpendicular to the segment [PQ] and bisects it. Let P(4,2,8) be a point. Find the symmetric partner Q of P with respect to (a) the point M(2,4,6)

M is the midpoint of PA:
$$\frac{a+4}{2} = 2$$
, $\frac{b+2}{2} = 4$, $\frac{c+8}{2} = 6$

$$\Rightarrow Q(0,6,4)$$

(b) the plane P: x = 10

$$(9(x_0, 2, 8))$$
 and $\frac{x_0 + 4}{2} = 10 \Rightarrow x_0 = 16$
So, $(9(16, 2, 8))$.

(c) the line
$$\ell: (x, y, z) = (4, 2, 4) + t(1, 1, 0)$$
 for $t \in \mathbb{R}$.

P
$$P = \{x, y, z\} = \{x, y, z\} = \{x\}$$

Find
$$S \in L$$
: $\overrightarrow{PS} \perp \overrightarrow{V}$

$$S(L + t, 2 + t, L), \overrightarrow{PS} = (t, t, -L)$$

$$\overrightarrow{PS} = (t, t, -L)$$

So, S(4,2,4)

So, G(L, 2, 0).

5. (10+10 pts.)

(a) Write the equation of the ellipse with foci $F_1(3,0)$, $F_2(-3,0)$ and minor axis (diameter) 8 units long.

Solution: Note that the foci lie on the x-axis and they are symmetric with respect to the origin. Hence, the equation of the ellipse should be

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

with $b = a\sqrt{1 - e^2}$ and the foci at the points (ae, 0) and (-ae, 0).

Since the minor axis is 8 units long, we have b=4. Then, ae=3 and $a\sqrt{1-e^2}=4$. This gives

$$\frac{e}{\sqrt{1-e^2}} = \frac{3}{4}.$$

Solving, we get e = 3/5 and hence a = 5. Therefore, the equation of the ellipse is

$$\boxed{\frac{x^2}{25} + \frac{y^2}{16} = 1}$$

(b) Find the value(s) of m so that the plane $\mathcal{P}: x+z=m$ touches (i.e. intersects at one point) the sphere $x^2+y^2+z^2=4$.

Solution: The equation of the plane \mathcal{P} gives z=m-x. In order for \mathcal{P} to intersect the sphere $x^2+y^2+z^2=4$ at one point, the equation

$$x^2 + y^2 + (m - x)^2 = 4$$

must have exactly one solution. Expanding, we get

$$x^2 + y^2 + m^2 - 2mx + x^2 = 4,$$

and simplifying, we get

$$2x^2 - 2mx + y^2 = 4 - m^2.$$

After completing the square, we get

$$2(x - m/2)^2 + y^2 = 4 - m^2/2.$$

In order for this equation to have exactly one solution, the number on the right must be zero. Hence,

$$m^2 = 8$$
,

and this gives

$$m = \pm 2\sqrt{2}$$