MATH 120 2016-2 Recitation Problems for Week 5

1. Find an equation of the set of all points equidistant from the points $A(-1,5,3)$ and $B(6,2,-2)$. Describe and sketch the set.
2. Describe (and sketch if possible) the set of points in \mathbb{R}^{3}.
(a) $|z| \leq 2$
(b) $x^{2}+z^{2} \leq 4$
(c) $x y=0$
(d) $\quad x y z=0$
(e) $1 \leq x^{2}+y^{2}+z^{2} \leq 25$
3. For given $\mathbf{a}=\mathbf{i}+\mathbf{j}+\mathbf{k} \quad \mathbf{b}=\mathbf{2 i}-\mathbf{j}+\mathbf{3 k}$, evaluate the followings:
(a) $|\mathbf{a}|$
(b) $2 \mathbf{a}-\mathbf{3 b}$
(c) unit vectors, in the direction of \mathbf{a} and \mathbf{b}
(d) $\mathbf{a} \cdot \mathbf{b}$
(e) the angle between \mathbf{a} and \mathbf{b}
(f) the scalar projection of \mathbf{a} in the direction of \mathbf{b}
(g) the vector projection of \mathbf{b} along \mathbf{a}.
4. Find the values of x such that the given vectors $\mathbf{a}=\mathbf{x i}+\mathbf{j}+\mathbf{2 k}$ and $\mathbf{b}=\mathbf{3 i}+\mathbf{4} \mathbf{j}+\mathbf{x k}$ are orthogonal.
5. A line l is given as intersection of two planes

$$
\left\{\begin{array}{l}
x-2 y+3 z=0 \\
2 x+3 y-4 z=0
\end{array}\right.
$$

a. find an equation of the line in the parametric form;
b. find a point on the line l closest to the point $(1,2,3)$.
6. Determine if there exists a plane that containing points $(2,0,3),(3,2,-1)$ and a line

$$
\frac{x-3}{4}=\frac{y-1}{8}=\frac{z+2}{-3} .
$$

7. a. Determine if a given lines are parallel, intersecting or skew

$$
\frac{x-1}{2}=\frac{y-1}{5}=\frac{z+1}{-5} \quad \text { and } \quad \frac{x-1}{4}=\frac{y-5}{5}=\frac{z-2}{7}
$$

b. Determine values of l and m, if exists, for which the following pair of planes

$$
2 x+l y+3 z=5 \quad \text { and } \quad m x-6 y-6 z+2=0
$$

is parallel, perpendicular, intersect at $\frac{\pi}{7}$ angle.
8. Describe and sketch the geometric object represented by the system of equations.

$$
\left\{\begin{array}{lll}
x^{2}-4 y^{2}-16 z^{2} & = & 16 \\
3 x-21 & = & 0
\end{array}\right.
$$

9. Sketch the graph of the surface

$$
x^{2}-c y^{2}+z^{2}=1
$$

depending on the value of c.

