Math 120-20152-Recitation 5

1) Write down the equation of the plane which contains the line of intersection of the two planes $x+y+2 z=4$ and $3 x-2 y+z=6$, and
a) which also passes through $(0,1,0)$.
b) which is parallel to the line $L: x-1=\frac{y-2}{3}=\frac{3-z}{2}$.
2) Write down the equation of the line L_{1} which passes through $(1,3,5)$ and which intersects both of the lines
$L_{2}: \overrightarrow{r_{2}}(t)=(6+3 t, 2+t, 11+2 t), t \in \mathbb{R}$ and
$L_{3}: \overrightarrow{r_{3}}(t)=(5-7 t, 4+2 t,-t), t \in \mathbb{R}$.
3) Find the intersection point of the following two lines if they intersect.
$L_{1}:\left\{\begin{array}{l}x=1+2 t \\ y=7-t \\ z=6-2 t\end{array} \quad t \in \mathbb{R} \quad L_{2}:\left\{\begin{array}{l}x=12-3 t \\ y=-7+4 t \\ z=5-t\end{array} \quad t \in \mathbb{R}\right.\right.$.
And if they intersect, write down the equation of the plane which contains both of the lines.
4) a) Show that the following two lines are skew.
$L_{1}: \overrightarrow{r_{1}}(t)=(1+2 t, 2-t, 4+3 t), t \in \mathbb{R}$
$L_{2}: \overrightarrow{r_{2}}(t)=(3+3 t, 6-4 t, 1+5 t), t \in \mathbb{R}$.
b) Find the distance from L_{1} to L_{2} (use the formula).
c) Find the two points $P \in L_{1}$ and $Q \in L_{2}$ such that the distance $|P Q|$ is minimum.
d) Write down the equation of the line L which intersects both of the lines L_{1} and L_{2} perpendicularly.
5) Let $A=(1,0,2)$ and $B=(3,6,8)$ be two points. Write down the equation of the line L_{1} which intersects the line segment $[A B]$ perpendicularly at the midpoint and which also intersects the line $L_{2}: 3-x=\frac{y}{4}, z=4$.
6) Calculate the distance from the point $(1,2,3)$ to the plane $x+3 y-4 z=2$ and find the point P on the plane which is closest to $(1,2,3)$.
7) Calculate the distance from the point $P(2,3,4)$ to the line $L: \vec{r}(t)=$ $(1+t, 2-t, 3+2 t), t \in \mathbb{R}$ and find the point $Q \in L$ which is closest to P.
8) Write down the equations of all lines (if any exists) which intersect the line $L: \vec{r}(t)=(1+t, 2+t, 3+t), t \in \mathbb{R}$ with an angle of $\pi / 6$ radians at the point $(2,3,4)$ and which are parallel to the plane $2 x-3 y+3 z=120$. How many such lines are there? (Hint: focus on a direction vector $\vec{v}=(a, b, c)$ of unit length for the line. 3 equations in 3 variables a, b and c. Answer: 2 lines. Note: solution of the equations looks nasty, don't write the final form of the line equation.)
