Math 120-Recitation Week 6

1. Show that the lines $L_{1}: x=t, y=t, z=t$ and $L_{2}: x=-1+s, y=2 s, z=3 s$ are skew, and find the distance between these lines.
2. Find an equation of the plane that contains the point $(-2,1,4)$ and $(0,3,1)$ and contains a line parallel to the vector $2 \overrightarrow{\mathbf{i}}-4 \overrightarrow{\mathbf{j}}+6 \overrightarrow{\mathbf{k}}$.
3. Let L be the line given by the parametric equations $x=1+2 t, y=-1+3 t, z=$ $-5+7 t, \quad t \in \mathbb{R}$, and let M be the plane $2(x-1)+2(y+3)-z=0$. Find two points on the line L at a distance 3 from the plane M.
4. Identify the surfaces represented by the equations below and sketch their graphs.
a) $16 x^{2}=y^{2}+4 z^{2}$
b) $x^{2}+y^{2}+z^{2}-6 y+2 z+7=0$
5. Consider the conical helix given by $\overrightarrow{\mathbf{r}}(t)=t \cos t \overrightarrow{\mathbf{i}}+t \sin t \overrightarrow{\mathbf{j}}+t \overrightarrow{\mathbf{k}}, \quad 0 \leq t \leq 2 \pi$. (Why is this called conical helix?)
a) Find the equation of the tangent line to the helix at the point $(-\pi, 0, \pi)$.
b) Find the length of the helix.
6. At time $t=0$, a particle is located at the point $(1,2,3)$. It travels in a straight line to the point $(4,1,4)$, has speed 2 at $(1,2,3)$ and constant acceleration $3 \overrightarrow{\mathbf{i}}-\overrightarrow{\mathbf{j}}+\overrightarrow{\mathbf{k}}$. Find an equation for the position vector $\overrightarrow{\mathbf{r}}(t)$ of the particle at time t.
