Math 120-Recitation Week 5

1. Find the Maclaurin series of $\left(2+3 x^{2}\right)^{1 / 10}$ and state the open interval that it converges to the function.
2. Find the Taylor series expansion of $\frac{1}{x(x+3)}$ about the point $a=1$.
3. In the following describe and sketch the set of points in \mathbb{R}^{3} that satisfy the given pair of equations and inequalities:
a) $x=1, \quad z=3$
b) $x^{2}+y^{2}=4, \quad z \geq y$
c) $x^{2}+y^{2}+z^{2}=9, \quad z=x$
4. Let $A=(1,2), B=(3,4)$ and $C=(5,-4)$ be vertices of a triangle. Using vector methods find the point G where the medians of the triangle meet. Find the vector and scalar projection of the vector represented by $\overrightarrow{B G}$ on the vector represented by $\overrightarrow{B C}$.
5. (Just as a supplement to the material that will be covered in the lecture)
a) Show that $|\mathbf{a}+\mathbf{b}|^{2}=|\mathbf{a}|^{2}+2 \mathbf{a} \cdot \mathbf{b}+|\mathbf{b}|^{2}$
b) Show that $\mathbf{a} \cdot \mathbf{b} \leq|\mathbf{a}||\mathbf{b}|$ (Cauchy-Schwarz Inequality)
c) Deduce from (a) and (b) that $|\mathbf{a}+\mathbf{b}| \leq|\mathbf{a}|+|\mathbf{b}|$ (Triangle Inequality)
6. a) Find the symmetric equations for the line that passes through the point $(0,2,-1)$ and is parallel to the line with parametric equations $x=1+2 t, \quad y=$ $3 t, \quad z=5-7 t$.
b) Find the points in which the line in part a) intersect the coordinate planes.
7. Let L_{1} and L_{2} be the lines given by the parametric equations
$L_{1}: x=1+2 t, \quad y=1+9 t, \quad z=2-t$,
$L_{2}: x=-1+t, \quad y=4+t, \quad z=1+3 t$.
Determine whether L_{1} and L_{2} are parallel, intersecting or skew. If they intersect find the intersection point.
8. Find the distance d from the point $(2,1,0)$ to the line with equations $x=-2, \quad y+1=z$.
