Department of Mathematics

	Analytic Geometry MidTerm I			
Code Acad. Year Semester Coordinator Date Time Duration	: Math 115 : 2017-2018 : Fall : E. Coskun	Last Name Name Department Signature	Student No	:
	: 17.40 : 100 minutes	$\begin{gathered} 5 \mathrm{Qu} \\ \mathrm{~T}, \end{gathered}$	4 Pages Points	
1^{2}	\square^{4}			

1. (20 pts.) Consider the points $A(3,1)$ and $B(7,-5)$ in the Cartesian plane.
a) Find the equation of the line which passes through A and B.
b) Find the midpoint of the line segment $\overline{A B}$.
c) Find the equation of the perpendicular bisector of $\overline{A B}$, i.e. the line that intersects the line segment $\overline{A B}$ at its midpoint with a right angle.
2. (20 pts.) Consider the polar equation $r=2 \sin (2 \theta)$ for $0 \leq \theta \leq \pi$.
a) Find the values of r for the following values of $\theta=0, \frac{\pi}{12}, \frac{\pi}{8}, \frac{\pi}{6}, \frac{\pi}{4}, \frac{2 \pi}{6}, \frac{3 \pi}{8}, \frac{5 \pi}{12}$.
b) Sketch the graph of the equation $r=2 \sin (2 \theta)$ for $0 \leq \theta \leq \pi$.
3. (20 pts.) Consider the points $A(0,4), B(6,0)$ and the line L with equation $y=2 x+1$ in the Cartesian plane. Find all points P on L such that the triangle $A P B$ is a right triangle (with right angle being at vertex P).
4. (20 pts.)
a) Show that the points $A(-1,3), B(3,11)$ and $C(5,15)$ are collinear (i.e. they lie on a line in the Cartesian plane).
b) Find a unit vector \vec{u} that has the same direction as $8 \vec{i}-\vec{j}+4 \vec{k}$.
c) Find the angle between the vectors $\vec{i}+2 \vec{j}-2 \vec{k}$ and $\vec{i}-\vec{k}$.
5. (20 pts.) Assume that $\bar{x} \bar{y}$ coordinate system is obtained from the $x y$-coordinate system by a rotation through angle $\alpha=\tan ^{-1}(3 / 4)$.
a) Find $\cos (\alpha)$ and $\sin (\alpha)$.
b) Write x and y in terms of \bar{x} and \bar{y}.
c) Let L be the line with $x y$-equation $3 x-4 y+50=0$. Find the equation of L in the $\bar{x} \bar{y}$ coordinate system.
d) Let P be the point whose $x y$-coordinates are $(4,3)$. Find the $\bar{x} \bar{y}$ coordinates of P.
e) Find the distance from the point P (given in part d) to the \bar{y}-axis.
