M E T U Department of Mathematics

	I	Analytic Geometry	
		MidTerm I	
Code:Math 115Acad. Year: $2017-2018$ Semester:FallCoordinator:E.CoskunDate: $09.11.2017$ Time: 17.40 Duration: 100 minutes	Last Name : Name : Department : Signature :	Student No :	
	: 09.11.2017 : 17.40 : 100 minutes	5 Questions on 4 Pages Total 100 Points	
1 2	3 4		

1.(20 pts.) Consider the points A(3,1) and B(7,-5) in the Cartesian plane.

a) Find the equation of the line which passes through A and B.

b) Find the midpoint of the line segment \overline{AB} .

c) Find the equation of the perpendicular bisector of \overline{AB} , i.e. the line that intersects the line segment \overline{AB} at its midpoint with a right angle.

2.(20 pts.) Consider the polar equation $r = 2sin(2\theta)$ for $0 \le \theta \le \pi$.

a) Find the values of r for the following values of $\theta = 0, \frac{\pi}{12}, \frac{\pi}{8}, \frac{\pi}{6}, \frac{\pi}{4}, \frac{2\pi}{6}, \frac{3\pi}{8}, \frac{5\pi}{12}$.

b) Sketch the graph of the equation $r = 2sin(2\theta)$ for $0 \le \theta \le \pi$.

3. (20 pts.) Consider the points A(0,4), B(6,0) and the line L with equation y = 2x + 1 in the Cartesian plane. Find all points P on L such that the triangle APB is a right triangle (with right angle being at vertex P).

3. (20 pts.)

a) Show that the points A(-1,3), B(3,11) and C(5,15) are collinear (i.e. they lie on a line in the Cartesian plane).

b) Find a unit vector \vec{u} that has the same direction as $8\vec{i} - \vec{j} + 4\vec{k}$.

c) Find the angle between the vectors $\vec{i}+2\vec{j}-2\vec{k}$ and $\vec{i}-\vec{k}$.

4. (20 pts.) Assume that $\bar{x}\bar{y}$ coordinate system is obtained from the *xy*-coordinate system by a rotation through angle $\alpha = \tan^{-1}(3/4)$.

```
a) Find \cos(\alpha) and \sin(\alpha).
```

b) Write x and y in terms of \bar{x} and \bar{y} .

c) Let L be the line with xy-equation 3x - 4y + 50 = 0. Find the equation of L in the $\bar{x}\bar{y}$ coordinate system.

d) Let P be the point whose xy-coordinates are (4,3). Find the $\bar{x}\bar{y}$ coordinates of P.

e) Find the distance from the point P (given in part d) to the \bar{y} -axis.