M E T U Department of Mathematics

		Analytic Geometry	
		Final Exam	
Code: Math 115Acad. Year: $2017-2018$ Semester: FallCoordinator:E. CoskunDate: $13.1.2018$ Time: $13:30$ Duration: 120 minutes	Last Name:Name:StudentDepartmentSignature	t No :	
	13:30 120 minutes	5 Questions on 4 Pages Total 100 Points	
1 2	3 4 5		

1. (5+5+5+5 pts.) Consider the hyperbola whose foci are F(4,4), F'(-4,-4) and eccentricity is e = 2.

(a) Find the center C.

(b) Write an equation for the axis ℓ of the hyperbola.

(c) Find the intersections G and G' of ℓ with the directrices d and d', respectively.

(d) Find the xy-equation of the hyperbola.

2. (3+2+3+6+6 pts.) Let S be a surface with the equation $4(x-1)^2 + 9(z-3)^2 = (y-4)^2$. (a) Identify the surface S. What type of a quadratic surface is S? (Explain).

(b) Describe the plane section of S by the plane $\mathcal{P}_1: y = 4$, i.e. find $S \cap \mathcal{P}_1$.

(c) Describe the plane section of S by the plane $\mathcal{P}_2: x = 1$.

Write the type and find the eccentricity e of the conic C which is the intersection of the given surface with each of the following planes (In each case write the equation of the conic in its simplest form): (d) y = 6

(e) z = 4

3. (14+6 pts.) Let S be a conic with the equation $2x^2 + 2\sqrt{2}xy + 3y^2 = 1$.

(a) Find $\cos \alpha$ and $\sin \alpha$ such that $0 < \alpha < \pi/2$ and when xy-coordinate system is rotated by α radians to obtain $\bar{x}\bar{y}$ -coordinate system, the equation of S has no $\bar{x}\bar{y}$ -term. Moreover write down x and y in terms of \bar{x} and \bar{y} .

(b) Write down the equation of S in terms of the (\bar{x}, \bar{y}) coordinates.

4. (6+7+7 pts.) Let ℓ be a line and \mathcal{P} be a plane in 3-space. P and Q are said to be symmetric (partners of each other) about the line ℓ if ℓ is a perpendicular bisector of the segment [PQ]. P and Q are said to be symmetric (partners of each other) about the plane \mathcal{P} if \mathcal{P} is perpendicular to the segment [PQ] and bisects it. Let P(4,2,8) be a point. Find the symmetric partner Q of P with respect to (a) the point M(2,4,6)

(b) the plane $\mathcal{P}: x = 10$

(c) the line ℓ : (x, y, z) = (4, 2, 4) + t(1, 1, 0) for $t \in \mathbb{R}$.

5. (10+10 pts.)

(a) Write the equation of the ellipse with foci $F_1(3,0)$, $F_2(-3,0)$ and minor axis (diameter) 8 units long.

(b) Find the value(s) of m so that the plane $\mathcal{P} : x + z = m$ touches (i.e. intersects at one point) the sphere $x^2 + y^2 + z^2 = 4$.