Department of Mathematics

	Analytic Geometry Final Exam		
Code Acad. Year Semester Coordinator Date Time Duration	: Math 115 : 2017-2018 : Fall : E. Coskun	Last Name Name Department Signature	Student No
	: 13.1.2018 : 13:30 : 120 minutes	$\begin{aligned} & 5 \text { Que } \\ & \text { To } \end{aligned}$	4 Pages Points
${ }^{2}$	$\left.\right\|^{4}{ }^{5}$		

1. $\left(\mathbf{5}+\mathbf{5}+\mathbf{5}+\mathbf{5} \mathbf{~ p t s .)}\right.$ Consider the hyperbola whose foci are $F(4,4), F^{\prime}(-4,-4)$ and eccentricity is $e=2$.
(a) Find the center C.
(b) Write an equation for the axis ℓ of the hyperbola.
(c) Find the intersections G and G^{\prime} of ℓ with the directrices d and d^{\prime}, respectively.
(d) Find the xy-equation of the hyperbola.
2. $(\mathbf{3}+\mathbf{2}+\mathbf{3}+\mathbf{6}+\mathbf{6} \mathbf{p t s}$. $)$ Let S be a surface with the equation $4(x-1)^{2}+9(z-3)^{2}=(y-4)^{2}$.
(a) Identify the surface S. What type of a quadratic surface is S ? (Explain).
(b) Describe the plane section of S by the plane $\mathcal{P}_{1}: y=4$, i.e. find $S \cap \mathcal{P}_{1}$.
(c) Describe the plane section of S by the plane $\mathcal{P}_{2}: x=1$.

Write the type and find the eccentricity e of the conic \mathcal{C} which is the intersection of the given surface with each of the following planes (In each case write the equation of the conic in its simplest form):
(d) $y=6$
(e) $z=4$
3. $\left(\mathbf{1 4 + 6}\right.$ pts.) Let S be a conic with the equation $2 x^{2}+2 \sqrt{2} x y+3 y^{2}=1$.
(a) Find $\cos \alpha$ and $\sin \alpha$ such that $0<\alpha<\pi / 2$ and when $x y$-coordinate system is rotated by α radians to obtain $\bar{x} \bar{y}$-coordinate system, the equation of S has no $\bar{x} \bar{y}$-term. Moreover write down x and y in terms of \bar{x} and \bar{y}.
(b) Write down the equation of S in terms of the (\bar{x}, \bar{y}) coordinates.
4. ($6+7+7$ pts.) Let ℓ be a line and \mathcal{P} be a plane in 3 -space. P and Q are said to be symmetric (partners of each other) about the line ℓ if ℓ is a perpendicular bisector of the segment $[P Q] . P$ and Q are said to be symmetric (partners of each other) about the plane \mathcal{P} if \mathcal{P} is perpendicular to the segment [$P Q$] and bisects it. Let $P(4,2,8)$ be a point. Find the symmetric partner Q of P with respect to (a) the point $M(2,4,6)$
(b) the plane \mathcal{P} : $x=10$
(c) the line $\ell:(x, y, z)=(4,2,4)+t(1,1,0)$ for $t \in \mathbb{R}$.
5. $(\mathbf{1 0}+10 \mathrm{pts}$.
(a) Write the equation of the ellipse with foci $F_{1}(3,0), F_{2}(-3,0)$ and minor axis (diameter) 8 units long.
(b) Find the value(s) of m so that the plane $\mathcal{P}: x+z=m$ touches (i.e. intersects at one point) the sphere $x^{2}+y^{2}+z^{2}=4$.

