Show your work and explain your claims.

Let f and g be differentiable functions on \mathbb{R} such that the tangent line to y = f(x) at x = 1 is given by the equation y = 2x + 1, and the tangent line to y = g(x) at x = 1 is given by the equation y = 3x - 2. Find an equation for the tangent line to y = f(x)g(x) at x = 1.

* tangent line to
$$f$$
 at $x=1$ is $y=2x+1 \Rightarrow f'(1)=2$ (Slope (Slope = 2) tangent)

(1, $f(1)$) is intersection of tangent with the curve

So we can find $f(1)$ by putting $x=1$ in the tangent line, $x=1\Rightarrow y=2+1=3\Rightarrow f(1)=3$

* tangent line to g at $x=1$ is $y=3x-2\Rightarrow g'(1)=3$

Similarly put $x=1$ in the tangent of g , $y=3x-2$
 $y=3-2=1\Rightarrow g(1)=1$

* Let $F(x)=f(x)\cdot g(x)$ tangent of $F(x)$ at $x=1$ has slope $F'(1)$

$$F'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) \Rightarrow F'(1) = f'(1) \cdot g(1) + f(1) \cdot g'(1)$$

$$= 2 + 9 = 11 - s \cdot lope$$

$$= f(1) - f(1) \cdot g(1) = 3 \cdot 1 = 3$$

eqn. of tangent line:
$$y-3=11(x-1)$$

 $y=11x-8$