Show your work and explain your claims.
Let $f(x)=\left\{\begin{array}{ll}b+3, & \text { if } x \leq 0 \\ \frac{x^{2}+3 x}{x}, & \text { if } 0<x<2 . \\ a+2 x, & \text { if } x \geq 2\end{array}\right.$ What must be the values) of a and b so that $f(x)$ is continuous at $x=0$ and $f(x)$ is not continuous at $x=2$.

* $f(x)$ to be continuous at $x=0$ the equality $\lim _{x \rightarrow 0} f(x)=f(0)$ must hold.
For $\lim _{x \rightarrow 0} f(x), \quad \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x^{2}+3 x}{x}=\lim _{x \rightarrow 0^{+}} \frac{-x(x+3)}{x}=\lim _{x \rightarrow 0^{+}}(x+3)=3$

$$
\text { - } \lim _{x \rightarrow 0^{-}} f(x)=\lim _{\substack{x \rightarrow 0^{-} \\ x<0}} b+3=b+3
$$

$\lim _{x \rightarrow 0^{+}} f(x)=3=b+3=\lim _{x \rightarrow 0^{-}} f(x)$ (for existence of the limit) $\} \begin{aligned} & b+3=3\end{aligned}$ $=f(0)$ (for continuity)

$$
\text { * } f(2)=a+4
$$

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} a+2 x=a+4
$$

$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{x^{2}+3 x}{x}=\frac{10}{2}=5$
If these three are equal then f is continuous at $x=2$

If $f(x)$ is not continuous at $x=2$,
then $\lim _{x \rightarrow 2} f(x) \neq f(2) \quad a+4 \neq 5$
(for this question since) $\Rightarrow a \neq 1$ the limit dine. it cannot) when $a \neq f_{1}$
$b=0$, a can be any real number except for 1 .

