Math 501 Homework 4

Due Date January 17, 2022 Monday

January 10, 2022

Chapter 10

Problem 1

Suppose μ is a finite measure. For measurable f and g define

$$d(f,g) = \int \frac{|f-g|}{1+|f-g|} d\mu.$$

Prove that d is a metric on the space of measurable functions except for the fact that d(f,g) = 0 only implies f = g a.e. Prove also that $f_n \to f$ in measure if and only if $d(f_n, f) \to 0$.

Hint: Let $g(x) = \frac{x}{1+x}$. Show that g is an increasing function on $[0, \infty)$.

Chapter 11

Problem 1

Suppose f is a measurable function. Prove the equality

$$\int_{-\infty}^{\infty} |f(x)| \ dx = \int_{0}^{\infty} m(\{x : |f(x)| \ge y\}) \ dy.$$

Where *m* is the Lebesque measure. **Hint:** Show that the set $E = \{ (x, y) \mid 0 \le y \le |f(x)| \}$ is in $\mathcal{L} \times \mathcal{L}$.

Chapter 12

Problem 1

Suppose μ is a signed measure. Prove that A is a null set with respect to μ if and only if $|\mu|(A) = 0$, where $|\mu| = \mu^+ + \mu^-$.

Chapter 13

Problem 1

Suppose μ and ρ are two measures with $\mu \ll \rho$. Let f be a Radon-Nikodym derivative of μ with respect to ρ . Show that f > 0 μ -a.e.