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Abstract— Sampling based methods resulted in feasible and
effective motion planning algorithms for high dimensional con-
figuration spaces and complex environments. A vast majority of
such algorithms as well as their application rely on generating
a set of open-loop trajectories first, which are then tracked
by feedback control policies. However, controlling a dynamic
robot to follow the planned path, while respecting the spatial
constraints originating from the obstacles is still a challenging
problem. There are some studies which combine statistical sam-
pling techniques and feedback control methods which address
this challenge using different approaches. From the feedback
control theory perspective, Reference Governors proved to be
a useful framework for constraint enforcement. Very recently,
Arslan and Koditschek (2017) introduced a feedback motion
planner that utilizes Reference Governors that provably solves
the motion planning problem in simplified spherical worlds.
In this context, here we propose a “trajectory-free” novel
feedback motion planning algorithm which combines the two
ideas: random trees and reference governors. Random tree
part of the algorithm generates a collision-free region as a
set of connected simple polygonal regions. Then, reference
governor part navigates the dynamic robot from one region to
the adjacent region in the tree structure, ensuring it stays inside
the current region and asymptotically reaches to the connected
region. Eventually, our algorithm robustly routes the robot from
the start location to the goal location without collision. We
demonstrate the validity and feasibility of the algorithm on
simulation studies.

I. INTRODUCTION AND RELATED WORK

Obstacle avoidance motion planning is one of the most
fundamental tasks of mobile robotics. The problem can
be stated as follows: given the robot dynamics and the
description of the environment, the motion planner finds
a sequence of commands such that the robot reaches the
goal configuration(s), while respecting the constraints such
as avoiding collisions with the obstacles, remaining within
velocity, acceleration and motor voltage limits. Traditionally,
an off-line planner determines a collision-free trajectory that
reaches a goal configuration for the kinematic model of
the robot, and an on-line feedback controller follows that
trajectory as closely as possible [1].

Several attempts have been made to use the reference
governor framework for motion planning under constraints.
Arslan and Koditschek [2] propose a provably correct,
computationally efficient motion planner for a world of
spherical obstacles. Petersen et al. [3] use rotating virtual
hyperplane concept, introduced by Park et al. [4], which
puts an additional, time varying constraint to avoid colli-
sion. Finally, without emphasizing motion planning, Gilbert
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Fig. 1. Block diagram of the algorithm. RG-Trees algorithm determines
medium term set points, r(t), which are reachable from the current
configuration q(t) and steer to the goal location qgoal. Reference governor
modifies r(t) such that the closed-loop robot does not collide with the
obstacles.

and Kolmanovsky [5] suggest hybrid reference governors:
the idea of dividing the configuration space into convex,
collision-free subsets, which are managed using reference
governors. Technically the basic idea of our method, random
reference governor trees for feedback motion planning, is
similar to the principles presented in this study.

In this paper, we propose a new trajectory-free, sampling
based, computationally efficient motion planning algorithm
that can handle arbitrary obstacle configurations provided
that the system dynamics are linear or feedback linearizable.
The algorithm is composed of two stages: a random tree
generation stage and a feedback motion control stage. The
block diagram topology of our method is illustrated in. Fig. 1.
The motion planning stage generates a tree that connects
the start location to the goal location, where the nodes
are collision-free, overlapping, square-shaped areas/volumes.
The goal location is located inside the root of the tree, and
start location is located at a leaf node. Then, the reference-
governor-based motion control stage navigates the robot from
the robot’s current node to the parent node, eventually to the
root node where the goal position resides.

This paper is organized as follows. In Section II, RRT-
based algorithms are summarized and the reference gover-
nor concept is explained. Section III introduces RG-Trees
algorithm – the main contribution of this paper. Section IV
reports our experimental scenario and simulation results, as
well as discussion of these results. Section V summarizes
our work and discusses future research directions.

II. BACKGROUND

A. RRT-Based Motion Planning

Rapidly exploring random trees (RRT) algorithm builds
a tree of feasible paths by incrementally adding a random,
collision-free edge to the tree [6]. Its algorithmic parameters
such as time complexity, space complexity, completeness and
optimality are discussed in Karaman and Frazzoli [7]. The
algorithm works as follows: The tree is initialized to the start
location as its root. Then, in a loop, a point is sampled from



the free space. If the link connecting the sample point to the
closest vertex in the tree is collision-free, the point and the
link are added to the tree as a vertex and an edge. The loop
iterates until the goal location is reached by a vertex.

There exist numerous modifications and extensions of
RRT, each of which concentrating on a different aspect of
the algoritm. For example, some researchers focused on the
optimality aspects of the algorithm, [8]–[11], whereas some
others extended the basic algorithm to solve dynamic motion
planning problems [12]–[16]. On the other hand, similar
to our method, some researchers [1], [17], [18] modified
the RRT algorithm (or other sampling based techniques)
to use regions (funnels) instead of points, which are then
acted as the basins of attraction of some local feedback
control policies. These feedback policies are connected in
the essence of the sequential composition idea introduced
by Burridge et al. [19]. Each region is associated with a
feedback control policy, which is responsible for navigating
the robot inside the area/volume to a final location which
is also located inside a different but sequentially connected
region.

B. Reference Governors

The reference governor is an add-on scheme for enforcing
pointwise-in-time state and control constraints by modify-
ing the reference command to a well-designed closed loop
system [20], as illustrated in Fig. 2. It allows to design
the controller without regard to the constraints, emphasiz-
ing controller simplicity, speed of response, robustness and
disturbance rejection. Then, the reference governor is used
in a cascade configuration around the closed loop system to
ensure constraint enforcement [5]. Consider a closed loop
system given with state space model

qt+1 = Aqt +Brt,

yt = Cqt +Drt,
(1)

and a constraint set, yt ∈ Y ∀t. The task of the reference
governor is to find the optimal modified reference signal,
r̃t, given the initial state qt, such that r̃t is as close to rt as
possible and no constraint violation occurs in the consequent
motion.

Definition 1: The pair of an initial state and a reference
signal, (q0, r̃), is output admissible if, starting from the initial
state q0 and keeping the reference constant at r̃, no constraint
violation occurs in the consequent motion.

Definition 2: Given a dynamic system and constraint set
Y , the set of all output admissible pairs is called the Maximal
Output Admissible Set (MOAS), O∞ [21].

Algorithmic calculation of MOAS is explained in detail in
[21]. We have from [20] that if
• the pair (C,A) is observable,
• A is asymptotically stable,
• constraint set Y is a polytope containing the equilibrium

point in its interior, i.e., Y = {y | Sy ≤ s} 1

1Note that the vector comparison operator ≤ here indicates that all
elements of the LHS are smaller than or equal to the corresponding element
in the RHS.
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Fig. 2. Block diagram of a reference governor applied to a closed loop
system [22]

MOAS turns out to be a polytope:

O∞ = {(q0, r̃) | Hqq0 +Hr r̃ ≤ h}, (2)

for which Hq , Hr and h can be calculated offline, if the
system is time invariant and the constraint set is static.

For MOAS calculated in (2), the Scalar Reference Gov-
ernor is formulated as follows: the modified reference r̃ is
initialized to an initially output admissible value given the
initial state q0. Then, it is updated in a loop according to the
following equation:

r̃t = r̃t−1 + κt(rt − r̃t−1), (3)

where κt is maximized subject to
• 0 ≤ κt ≤ 1
• (qt, r̃t) is output admissible, i.e., Hqqt +Hr r̃t ≤ h

III. RG-TREES

RG-Trees algorithm consists of two stages. In the first
stage, a tree structure that is composed of connected square
shaped regions is generated using the map of the environ-
ment, ignoring the robot motion dynamics. First region is
created around the goal location. Then, tree extension is
repeated until one of the newly created regions covers the
start location. In this way we ensure that there is a “safe
connection” between the start location and the goal location.

In the second stage, a reference governor based control
strategy that navigates the dynamic robot to goal location
is used. It is important to note that this algorithm does not
generate an open-loop trajectory. Instead, it calculates a set of
connected regions where the robot can be controlled safely.
The trajectory of motion is then determined by the equations
of motion of the robot.

A. Tree Generation

The aim of the tree generation stage is to cover the
configuration space, fully or partially, by connected nodes
(regions) for which the robot’s motion can be controlled in-
dependently, to construct a global motion planner [1], [18]. In
[1], configuration space is covered by balls probabilistically,
and a graph structure is constructed. Then, global navigation
problem is reduced to a search problem on the graph. In [18],
instead of a graph, a tree structure is used and tree generation
is stopped as soon as initial and goal configurations are
connected, emphasizing computational simplicity over path
optimality. In these methods the nodes are chosen to be
circular, because of the applied control methods (Navigation



functions in [1] and Lyapunov function based controller in
[18]).

In this work, we use a reference governor based con-
troller. Since finite determination of reference governors is
guaranteed under convex polygonal constraint set [20], this
algorithm’s nodes are not circular. For the sake of simplicity
and feasibility, we adopted square-shaped regions. Note that
one can use the algorithm using any convex polygon or
a set of predetermined convex polygons, with only slight
modifications.

We illustrate the tree generation algorithm in Fig. 3. The
algorithm starts from the goal location. A node is generated
around that point, and this node is expanded (See Sec III-
A.2). Then, until a stop condition is satisfied, the following
procedure is repeated:

• a random point is sampled from the space which is not
covered by a node

• from the covered area, the closest point to this sample
is calculated

• a new node is generated and expanded around that point

Termination condition can be that the configuration space
is probabilistically covered [1]. However, in the example,
tree generation is terminated as soon as the start location
is covered by a node, as in [18]. The rationale behind this
choice is that tree generation algorithm is incremental, if the
robot leaves the covered space, new nodes can be added on-
line, and the algorithm is sufficiently fast for a variety of
systems to be performed in real time.

1) Node Generation: When a new node is to be generated
around a point, the closest point on an obstacle to that point
is calculated. Then, a square region is constructed with the
former point being its center and the latter being its first
corner.

The corner point is stored as the offset of the node’s
reference frame, (x0, y0), and the angle between the first
edge and horizontal is stored as the node’s rotation, θ, see
Fig. 4. Moreover, edge length of that square is stored as the
node’s scale.

2) Node Expansion: Usage of larger nodes yields two
major advantages. Firstly, since larger nodes cover larger
areas of the free space, they result in a more sparse tree.
Secondly, they allow the robot to move faster. The reference
governor ensures that the robot’s motion is confined to the
current node, which implicitly incurs a velocity constraint on
the robot. Larger nodes result in looser constraints.

For the sake of simplicity, the nodes are expanded in
discrete steps. At each step, the node’s scale is multiplied
by a constant factor γ, keeping the offset, i.e. the corner
touching the obstacle, and the rotation unaltered. If the
expanded node collides with an obstacle, the last expansion
is reverted. If no collision occurs, the procedure repeats.

Larger values for multiplication constant γ yield lower
calculation time with lower spatial resolution, and smaller
values yield better spatial resolution at the expense of slower
calculations. A constant value of γ = 1.2 resulted in
satisfactory results in our experiments.

Algorithm 1 RG Tree Generation
1: GoalNode← GenerateSquareRegion(qgoal)
2: GoalNode← Expand(GoalNode)
3: G← InitializeTree(GoalNode)
4: for k = 1 to K do
5: qrand ← SampleFree()
6: qnearest ← Nearest(G, qrand)
7: Nodeq ← GenerateSquareRegion(qnearest)
8: Nodeq ← Expand(Nodeq)
9: G.InsertNode(Nodeq)

10: if qinit ∈ G then
11: return G
12: end if
13: end for
14: Return G

GOAL

(a) (b)

(c) (d)

Fig. 3. RG-Tree generation algorithm: (a) Initial map of the arena,
(b) A node generated(dark grey) and expanded(light grey) around goal
position, (c) A random point(red) sampled from the free space, closest
point to the previous tree(blue) calculated, a node generated(dark grey) and
expanded(light grey) around that point, (d) Another node is generated and
expanded as in (c).

B. Motion Control

Gilbert and Kolmanovsky [5] proposed a hybrid reference
governor method, that divides the configuration space into
overlapping, convex sets, and designs a different reference
governor for each set. However, calculation of MOAS for a
given dynamical system and constraint set is computationally
expensive. In our study, for computational efficiency and
considering limitations in real-time motion planning appli-
cations, we propose a method to minimize the number of
MOAS calculations. Observe the following:
• MOAS calculation is linear in the constraint set,
• If the equations of motion of the system are symmetric

under rotation, MOAS can be rotated (and translated),
• A reference governor with a large number of constraints

can be divided into two or more reference governors
which address different constraints of the older refer-
ence governor.



The first statement can be rewritten as follows: If

MOAS ({y | Sy ≤ s}) = {(q0, r̃) | Hqq0+Hr r̃ ≤ h}, (4)

for a particular system, then

MOAS ({y | Sy ≤ αs}) = {(q0, r̃) | Hqq0+Hr r̃ ≤ αh} ∀α.
(5)

That is, for all square-shaped positional constraints of the
form

{(x, y) | 0 ≤ x ≤ α, 0 ≤ y ≤ α}, (6)

it would suffice to calculate MOAS for the constraint set

{(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. (7)

The second statement indicates that, since the double
integrator system is symmetric under rotation, any square-
shaped positional constraint set can be converted into the
form given in (6). For example, for a 2D dynamic robot
with the canonical state variable q = [x y ẋ ẏ]T , for the
square node given in Fig. 4, conversion is given by

x
y
ẋ
ẏ

 =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ − sin θ
0 0 sin θ cos θ

 ·

x̄
ȳ
˙̄x
˙̄y

+


x0
y0
0
0

 (8)

The last statement allows that the square-shaped posi-
tional constraints, required by the algorithm, constitute one
reference governor, RG1, while all other constraints such
as velocity and control input limitations constitute another
reference governor, RG2, if necessary. Then, for any node
of the generated tree, RG1 is rotated, translated and scaled
accordingly while RG2 is used directly.

The task of motion control part is to asymptotically steer
the robot from CurrentNode to NextNode. Therefore, the
medium-term reference rt should lie inside the intersection
of these nodes. We choose it to be the centroid of the
intersection region. When the robot enters NextNode; Cur-
rentNode, NextNode and rt are updated accordingly. Motion
control is summarized in Algorithm 2.

Fig. 4. Two consecutive nodes, CurrentNode(dark grey) and NextN-
ode(light grey), generated by the algorithm. The centroid of the intersec-
tion(red point) is the set-point in CurrentNode. (x̄, ȳ) is CurrentNode’s
coordinate frame, offset by (x0, y0) and rotated by θ from the global frame.

Algorithm 2 RG Tree Execution
1: CurrentNode← G.LastNode()
2: NextNode← CurrentNode.Parent()
3: r ← Centroid(CurrentNode,NextNode)
4: r̃ ← qinit
5: RG1← ReferenceGovernor(UnitSquareConstraints)
6: CurrentRG← RTS(RG1, CurrentNode) . Rotate,

Translate and Scale RG1 according to CurrentNode
7: NextRG← RTS(RG1, NextNode)
8: while qgoal not reached do
9: if in GoalNode then

10: r ← qgoal
11: else if OutputAdmissible(q,NextRG) then
12: CurrentNode← NextNode
13: NextNode← CurrentNode.Parent()
14: r ← Centroid(CurrentNode ∩NextNode)
15: CurrentRG← NextRG
16: NextRG← RTS(RG1, NextNode)
17: end if
18: r̃ ← ModifiedReference(q, r, r̃, CurrentRG)
19: r̃ ← ModifiedReference(q, r, r̃, RG2)
20: end while

IV. IMPLEMENTATION, RESULTS AND CONCLUSIONS

This section presents our simulation results, illustrating the
flow of the RG-Trees algorithm and its feasibility.

A. Robot Motion Model

In the simulation, a fully-actuated, double-integrator, pla-
nar, point robot model is used. State vector of the robot is
q = [x y vx vy]T , and the input vector is u = [ax ay].
Positional components of the robot are measured. The system
is discretized for Ts = 0.05s using forward Euler method.

The reference governor works on the closed-loop system.
In order to emphasize the effectiveness of the algorithm, as
the inner loop controller, an underdamped PD controller is
chosen. The controller’s parameters are Kp = 4.1 and Kd =
2.2. The overall discrete time state space model is as follows:

A =


1 0 0.05 0
0 1 0 0.05

−0.205 0 0.89 0
0 −0.205 0 0.89

 , B =


0 0
0 0

0.205 0
0 0.205

 ,
C =

[
1 0 0 0
0 1 0 0

]
, D = 0, (9)

B. Simulation Results

RG-Trees algorithm requires a collision check module,
that checks whether a square-shaped node collides with an
obstacle or the boundary, to run properly. For the sake
of simplicity, polygonal obstacles and arena boundaries
were chosen, although arbitrarily shaped environment with a
proper collision checking module would work.

Arena boundary is square shaped, with an edge length of
12 m. In the sample environment, there exist six different
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Fig. 5. (a) The tree generated by the algorithm. The algorithm is started from goal location (pink x) and terminated as soon as the start location (pink o)
is covered by a node. 47 overlapping, square-shaped nodes were generated. (b) The trajectory followed by the dynamic robot. 18 of the 47 nodes generated
were used in the path. (c) The tree generated when node expansion is disabled using the same random seed as in (a). 120 nodes were generated. (d) The
trajectory of the robot for the tree given in (c). 28 nodes are used.

obstacles. In these simulations, the robot’s initial location is
(8, 0.5) and goal location is (3.5, 10). The arena is illustrated
in Fig. 5.

In the results presented in this paper, we implemented the
algorithm in MATLAB on an Intel i7 3.4 GHz computer run-
ning Windows OS. The algorithm begins the tree generation
from the goal location, and terminates as soon as the start
location is covered by a node. In this specific simulation, RG-
Tree generation algorithm explored the start location after
generating 47 nodes, in just under 0.3 s. The resulting path
consists of 18 of these 47 nodes. Repeated simulations took
0.24 seconds on average and 0.6 seconds at maximum for
the given configuration.

To investigate the effects of node expansion given in

section III-A.2, the simulation is repeated with node expan-
sion disabled, using the same random seed. The algorithm
generated a tree with 120 nodes in 0.20 s. The path uses
28 of these nodes. As expected, smaller nodes for the no-
expansion case resulted in a slower robot motion. With node
expansion disabled, the robot moved with an average speed
of 0.621 m/s and reached the goal location in 20.5 s, whereas
when node expansion enabled, the average speed is 0.920 m/s
and the robot reaches the goal in 15.4 s. Simulation results
are given in Fig. 5 and Table I. It is important to remark
that MOAS calculation algorithm for the system given in
(9) and constraint set given in (7) took 1.2 s – 4x the
time it took to generate the whole tree. However, since both
the motion model and constraint set are known and time



TABLE I
SIMULATION RESULTS WITH AND WITHOUT EXPANDING NODES

Expansion
Mode # Nodes CPU

Time
Path

Depth
Average
Speed

Arrival
Time

ON 47 0.3 s 18 0.92 m/s 15.4 s
OFF 120 0.2 s 28 0.62 m/s 20.5 s

invariant, we were able to calculate and save MOAS off-
line before the simulations. Then, instead of calculating on-
line, the simulations loaded MOAS from the memory. It is
also important to note that, instead of calculating a different
MOAS for each of the 15 nodes on the path, which would
require on-line calculation and take approximately 18 second,
the algorithm calculated a single MOAS, off-line, and used
that MOAS for all nodes by rotating, translating and scaling
appropriately.

V. DISCUSSION AND FUTURE WORK

In this paper, we have introduced the RG-trees feedback
motion planning method which synthesizes sampling based
planning techniques and reference governors. The method
mainly produces a random tree of connected square regions–
rotated, translated and scaled under certain conditions. In-
side each region, we navigate the robot using a reference-
governor-based feedback control policy which guarantees
a collision free asymptotic convergence. We demonstrated
the validity of the algorithm on MATLAB simulations on
2D environment. However, the algorithm can be directly
generalized to higher dimensions by incorporating higher
dimensional polygons (e.g. cubes for 3D environment). In the
near future we would like to implement our method on higher
dimensional spaces and test the feasibility of the approach.

One of the limitations of the current method is that it
is limited to systems where the dynamics are linear or
feedback linearizable. Our ultimate goal in the near future
is to generalize this concept to systems with non-linear
and non-holonomic robotic systems. Another aspect that we
would like to address is to improve the method by directly
handling uncertainties and noises (measurement and process)
which are inevitable in real world applications.
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