1. For the given sequence determine whether it is monotone and whether it is convergent. If convergent, find its limit:
(a) $\{n-\sqrt{n+1} \sqrt{n+3}\}$
(b) $\left\{\frac{(\ln n)^{2}}{n}\right\}$
(c) $\left\{\left(1+\frac{(-1)^{n}}{2}\right)^{n}\right\}$
(d) $\left\{\frac{(n!)^{2} 2^{n}}{(2 n)!}\right\}$
2. Find the limit of the sequence if it is convergent and explain why if it is divergent:
(a) $\left\{\frac{\sin (2 n)}{1+\sqrt{n}}\right\}$
(b) $\{\arctan (\ln n)\}$
(c) $\left\{\frac{n!}{\pi^{n}}\right\}$
(d) $\left\{\frac{(-4)^{n} n^{2 n}}{(2 n)!+n^{n}}\right\}$
3. Let the sequence $\left\{a_{n}\right\}$ be defined by $a_{1}=2$ and $a_{n+1}=\frac{a_{n}}{1+a_{n}}$ for $n \geq 1$.
(a) Show that $\left\{a_{n}\right\}$ is bounded.
(b) Show that $\left\{a_{n}\right\}$ is decreasing.
(c) Find $\lim _{n \rightarrow \infty} a_{n}$.

$$
\text { Let } \begin{aligned}
u_{n} & =\frac{(-4)^{n} n^{2 n}}{(2 n)!+n^{n}}=\frac{(-1)^{n} \cdot 2^{2 n} \cdot n^{2 n}}{(2 n)!+n^{n}} \\
& =\frac{(-1)^{n}(2 n)^{2 n}}{(2 n)!+n^{n}}=\frac{(-1)^{n}(2 n)^{2 n}}{(2 n)!\left(1+\frac{n^{n}}{(2 n)!}\right)}
\end{aligned}
$$

consider the subsequence $\left[a_{2 n}\right]$ even terms (positive terms)

$$
\begin{aligned}
a_{2 n} & =\frac{(4 n)^{4 n}}{(4 n)!\left(1+\frac{(2 n)^{2 n}}{(4 n)!}\right)}=\frac{4 n \cdot 4 n \cdot 4 n \cdots \cdot 4 n}{4 n(4 n-1) \cdots 3 \cdot 2 \cdot 1} \cdot \frac{1}{\left(1+\frac{(2 n)^{2 n}}{(4 n)!}\right)} \\
& \geqslant \frac{1}{1+\frac{(2 n)^{2 n}}{(4 n)!}} \\
(*) & \geqslant \frac{1}{2} \text { since } \frac{2 n^{2 n}}{(4 n)!} \geqslant 1
\end{aligned}
$$

Similarly consider the nepative terms (odd terms)

$$
-\frac{(2 n)^{2 n}}{(2 n)!+n^{n}} \leqslant-\frac{1}{2} \text { from }(-t)
$$

claim: $\lim _{n \rightarrow \infty}$ an lune.
proof: (Proof by contradiction)
Suppose $\lim _{n \rightarrow \infty} a_{n}=L \leftarrow$ exist then $\lim _{n \rightarrow \infty} a_{2 n}=\lim _{n \rightarrow \infty} a_{2 n+1}=L$
but we have even terms $\geqslant \frac{1}{2}, e_{1} \quad l \geqslant \frac{1}{2}$
and odd terms $\leq-\frac{1}{2}$, re $<\leq-\frac{1}{2}$
So this is a contradiction,
Te, our assumption $B$ wrong, ie, $\lim _{h \rightarrow \alpha}$ an ane.

Math 120 Recitation
Week 1

1. For the given sequence determine whether it is monotone and whether it is convergent. If convergent,
find its limit:
(a) $\{n-\sqrt{n+1} \sqrt{n+3}\}$
(b) $\left\{\frac{(\ln n)^{2}}{n}\right\}$
(c) $\left\{\left(1+\frac{(-1)^{n}}{2}\right)^{n}\right\}$
(d) $\left\{\frac{(n!)^{2} 2^{n}}{(2 n)!}\right\}$

Soln: (a) Note: A seq $\left\{a_{n}\right\}$ be a fund from $1 N$ to $\mathbb{R}, x_{1} \quad f: \mathbb{M} \rightarrow \mathbb{R}$

$$
n \longmapsto f(n)=a_{n}
$$

Let $f(x)=x-\sqrt{(x+1)(x+3)}$ where $f(n)=a_{n}$. $\forall n \geqslant 1$ 4 diff. on $(0, \infty)$
Now consider $f^{\prime}(x)=1-\frac{2 x+4}{2 \sqrt{x^{2}+4 x+3}}=1-\frac{x+2}{\sqrt{x^{2}+4 x+3}}$

Note: $\frac{x+2}{\sqrt{x+1} \sqrt{x+3}}=\sqrt{\frac{x^{2}+4 x+4}{x^{2}+4 x+3}}>1 \quad \forall x \geqslant 1$
so $f^{\prime}(x)=1-\frac{x+2}{\sqrt{x^{2}+4 x+3}}<0 \quad \forall x \geqslant 1$
$\Rightarrow f(x)$ is a decreasing func on $(1, \infty)$
$\Rightarrow f(n)=a_{n}$ is decreasing sequence, ir $\left[a_{n}\right]$ is monotone.

Let $a_{n}=n-\sqrt{(n+1)(n+3)}$, then consider $\lim _{n \rightarrow \infty} a_{n}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}-(n+1)(n+3)}{n+\sqrt{(n+1)(n+3)}} \\
&=\lim _{n \rightarrow \infty} \frac{\not 2-x^{2}-4 n-3}{n+\sqrt{(n+1)(n+3)}}=\lim _{n \rightarrow \infty} \frac{-4 n-3}{n+\sqrt{n^{2}+4 n+3}} \\
&=\lim _{n \rightarrow \infty} \not \alpha(-4-3 / n) \\
& \alpha\left(1+\sqrt{1+\frac{4}{n}+\frac{3}{n^{2}}}\right) \\
&=\frac{-4}{2}=-2
\end{aligned}
$$

$\Rightarrow$ San) is convergent sequence (cons to -2 ]
(b) Let $a_{n}=\frac{(\ln (n))^{2}}{n}$ for $n=1,2,3 \ldots$
$a_{1}=0 \quad$ and $\quad a_{n}>0 \quad \forall_{n} \geqslant 1$
Let $f(x)=\frac{(\ln (x))^{2}}{x}$ where $f(n)=$ an $\quad \forall n \in \mathcal{V}^{+}$then

$$
\begin{aligned}
f^{\prime}(x) & =\left[2 \ln (x) \cdot \frac{1}{x} \cdot x-(\ln (x))^{2}\right] \frac{1}{x^{2}} \\
& =\frac{\ln (x)(2-\ln (x))}{x^{2}} \\
& \Rightarrow f^{\prime}(x)=0 \text { if } \ln (x)=0 \text { or } 2-\ln (x)=0
\end{aligned}
$$

re, $f^{\prime}(x)=0$ if $x=1$ or $x=e^{2}$

|  | $e^{2}$ |  |
| :--- | :--- | :--- |
| $f^{\prime} \mid \%$ | + | - |
| $f$ | $\gamma$ | $\searrow$ |

$f$ is increasing on $\left(1, c^{2}\right)$ $f$ is dec. on $\left(e^{2}, \infty\right)$
so $\left[a_{n}\right\}$ is increasing for $n=1,2,3,4,5,6,7$ and \{an\} is decreasing for $n>7$

Thus, \{un\} is Not monotone.
Let $f(x)=\frac{(\ln (x))^{2}}{x} \Rightarrow f(n)=a_{n}$
consider $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\ln (x)^{2}}{x} \quad\left[\frac{\infty}{\infty}\right]$

$$
\begin{aligned}
& \stackrel{(H)}{ }=\lim _{x \rightarrow \infty} 2 \cdot \ln (x) \cdot \frac{1}{x} \quad\left[\frac{\infty}{\infty}\right] \\
& \stackrel{i H}{y}=\lim _{x \rightarrow \infty} 2 \cdot \frac{1}{x} \\
&=0
\end{aligned}
$$

since $\lim _{x \rightarrow \infty} f(x)=0$, we have $\lim _{n \rightarrow \infty} a_{n}=0$ Te, the seq $\left\{a_{n}\right\}$ is convergent (cons to o.)
(c) Let $a_{n}=\left(1+\frac{(-1)^{n}}{2}\right)^{n}$
we have $a_{1}=\left(1-\frac{1}{2}\right)^{1}=\frac{1}{2}$

$$
\begin{aligned}
& a_{2}=\left(1+\frac{1}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4} \\
& a_{3}=\left(1-\frac{1}{2}\right)^{3}=\frac{1}{8}
\end{aligned}
$$

so we have $a_{1}<a_{2}$ but $a_{2}>a_{3}$, so $\left\{a_{n}\right\}$ is NoT monotone.
consider $a_{2 n}=\left(1+\frac{(-1)^{2 n}}{2}\right)^{2 n}=\left(1+\frac{1}{2}\right)^{2 n}=\left(\frac{3}{2}\right)^{2 n}$ and $\quad a_{2 n+1}=\left(1+\frac{(-1)^{2 n+1}}{2}\right)^{2 n+1}=\left(1-\frac{1}{2}\right)^{2 n+1}=\left(\frac{1}{2}\right)^{2 n+1}$

Note: If all subsequences of an cons. to the same limit value $L(\in \mathbb{R})$ then $\lim _{n \rightarrow \infty} a n=l$
We have,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{2 n}=\lim _{n \rightarrow \infty}\left(\frac{3}{2}\right)^{2 n}=\infty \\
& \lim _{n \rightarrow \infty} a_{2 n+1}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{2 n+1}=0
\end{aligned}
$$

Hence, $\lim _{n \rightarrow \infty}$ an die., $\left\{a_{n}\right\}$ is divergent.
(d) let $a_{n}=\frac{(n!)^{2} 2^{n}}{(2 n)!} \quad$ Node that $a_{n}>0 \quad \forall n \geqslant 1$.

Consider $\frac{a_{n+1}}{a n}=\frac{[(n+1)!]^{2} 2^{n+1}}{(2(n+1))!} \cdot \frac{(2 n)!}{(n!)^{2} \cdot 2^{n}}$

$$
\begin{aligned}
& =\frac{(n+1)^{2} \cdot(n!)^{2} \cdot 2^{n} \cdot 2}{(2 n+2)(2 n+1) \cdot(2 n)!} \frac{(2 n)^{!}!}{(n!)^{2} \cdot 2^{n}} \\
& =\frac{(n+1)^{k k} \cdot x}{2(n+1) \cdot(2 n+1)} \\
& =\frac{n+1}{2 n+1}<1 \text { since } \quad \begin{array}{l}
n+1<2 n+1 \\
\\
H n \geqslant 1
\end{array}
\end{aligned}
$$

$\Rightarrow a_{n+1}<a_{n} \quad \forall_{n} \geqslant 1$
$\Rightarrow\left(a_{n}\right)$ is decreasing sequence. So it is monotone
Now consider $a_{n}=\frac{\left(\left.n!\right|^{2} \cdot 2^{n}\right.}{(2 n)!}=\frac{(n!)^{2 x} \cdot 2^{n}}{n!(n+1)(n+2) \ldots(2 n)}$.

$$
\begin{aligned}
& =\frac{1 \cdot 2 \cdot 3 \cdots n}{(n+1)(n+1) \cdots(2 n)} \cdot 2 \cdot 2 \cdots-2 \\
& =\frac{1}{n+1} \cdot \underbrace{\frac{2}{n+2} \cdot \frac{3}{n+3} \cdots \frac{n}{2 n}}_{\leqslant \frac{1}{2^{n-1}}(*)} \cdot 2^{n} \\
& \leq \frac{1}{(n+1) \cdot 2^{n-1}} \cdot 2^{n}=\frac{2}{n+1}
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \frac{2}{n+1}=0$ and $0 \leqslant a_{n} \leq \frac{2}{n+1}$
by sequeeze the $\lim _{n \rightarrow \infty} a_{n}=0$
(*) Must show $\frac{2}{n+2} \cdot \frac{3}{n+3} \cdots \frac{n}{n+n} \leq \frac{1}{2^{n-1}}$
Note that $\frac{2}{n+2} \cdot \frac{3}{n+3} \cdots \frac{n}{n+n}=\frac{(n!)^{2} \cdot(n+1)}{(2 n)!}$

$$
\begin{aligned}
& =\frac{\alpha!\cdot n!\cdot(n+1)}{n!(n+1) \cdot(n+2) \cdots(2 n)} \\
& =\frac{n!}{(n+2)(n+3) \cdots(n+n)} \\
& =\frac{2 \cdot 3 \cdots n}{(n+2)(n+3) \cdots(n+n)} \\
& =c n
\end{aligned}
$$

ie, well show that $c_{n} \leq \frac{1}{2^{n-1}} \quad \forall n \geqslant 1$.
Use induction on $n$ :

- if $n=2 \Rightarrow c_{2}=\frac{2}{4} \leq \frac{1}{2}$
- Suppose $c_{n} \leq \frac{1}{2^{n-1}}$, now show that

$$
c_{n+1} \leq \frac{1}{2^{n}}
$$

Consider cn+1 $=\frac{[(n+1)!]^{2}(n+2)}{(2(n+1))!}=\frac{(n+1)^{2} \cdot(n!)^{2}(n+2)}{(2 n+2)(2 n+1)(2 n)!}$

$$
=\frac{(n+1) \cdot(n!)^{2}}{(2 n)!} \cdot \frac{(n+1) \cdot(n+2)}{(2 n+2) \cdot(2 n+1)}
$$

$$
\left.=c n \cdot \frac{n+2}{2(2 n+1)} \curvearrowright\right) \text { Note }: \begin{aligned}
& n+2 \leq 2 n+1 \\
& \forall n \geqslant 1
\end{aligned}
$$

$\leqslant c_{n} \cdot \frac{1}{2} \quad$ since $\quad \frac{n+2}{2 n+1} \leqslant 1$

$$
\leq \frac{1}{2^{n-1}} \cdot \frac{1}{2}=\frac{1}{2^{n}}
$$

Hence $c_{n} \leq \frac{1}{2^{n-1}}$

2．Find the limit of the sequence if it is convergent and explain why if it is divergent：
（a）$\left\{\frac{\sin (2 n)}{1+\sqrt{n}}\right\}$
（b）$\{\arctan (\ln n)\}$
（c）$\left\{\frac{n!}{\pi^{n}}\right\}$
（d）$\left\{\frac{(-4)^{n} n^{2 n}}{(2 n)!+n^{n}}\right\}$
（a）Let $a_{n}=\frac{\sin (2 n)}{1+\sqrt{n}}$ for $n=1,2,3 \ldots$
Now consider $\left|a_{n}\right|=\frac{\mid \sin (2 n))}{(1+\sqrt{n}-1>0 \quad \forall n \geqslant 1}$

$$
0 \leq\left|a_{n}\right| \leq \frac{1}{1+\sqrt{n}}
$$

Since $\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{n}}=0$ ，by sequeeze the

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=0
$$

NoTE：If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then $\lim _{n \rightarrow \infty} a_{n}=0$
So we have $\lim _{n \rightarrow \infty} a_{n}=0=\lim _{n \rightarrow \infty} \frac{\sin (2 n)}{1+\sqrt{n}}$

$$
⿻ 上 丨
$$

$\left\{a_{n}\right\}$ is convergent．
(b) Let $a_{n}=\arctan (\ln n)$ and let $f(x)=\arctan (\ln x)$ the we have $f(n)=$ an for $n=1,2 \ldots$ ( $f$ diff $(1, \infty))$ we have $\lim _{x \rightarrow \infty} \ln (x)=\infty$, So $\lim _{n \rightarrow \infty} \arctan (\ln (x))=\arctan \left(\lim _{x \rightarrow \infty} \ln (x)\right)^{l}=\pi / 2$

Hence, we have $\lim _{n \rightarrow \infty} a_{n}=\frac{\pi}{2}$, so $\left\{a_{n}\right\}$ is cons.
(c) Let $a_{n}=\frac{n!}{\pi^{n}}$ for $n=1,2 \ldots$

Consider $\quad a_{n}=\frac{n!}{\pi^{n}}=\frac{1 \cdot 2 \cdot 3 \cdot 4 \ldots n}{\pi \cdot \pi \cdot \pi \ldots \pi}$

$$
\begin{aligned}
& \geqslant \frac{4}{\pi} \frac{4}{\pi} \cdot \frac{4}{\pi} \cdot \cdots \cdot \frac{4}{\pi} \cdot \frac{3 \cdot 2 \cdot 1}{\pi \pi \pi} \\
& \geqslant\left(\frac{4}{\pi}\right)^{n-3} \cdot \frac{6}{\pi^{3}}:=b_{n}
\end{aligned}
$$

We have $\lim _{n \rightarrow \infty}\left(\frac{4}{\pi}\right)^{n-3} \cdot \frac{6}{\pi^{3}}=\infty=\lim _{n \rightarrow \infty} b_{n}$

$$
\Downarrow
$$

[bn] is unbounded
( $\exists$ no upper bound)
since $0<a n$ and $a n \geqslant b n$ and $\{b n\}$ is unbid, $\left\{a_{n}\right\}$ is also unbounded.

Now, well show that Jan\} ~ i s ~ i n c r e a s i n g ~ f o r ~ $n \geqslant 3$ let consider $\frac{a_{n+1}}{a n}=\frac{(n+1)!}{\pi^{n+1}} \frac{\pi^{n}}{n!}=\frac{n+1}{\pi}>1 \quad \forall n \geqslant 3$
ie, $a_{n+1} \geqslant a_{n} \forall n \geqslant 3 \Rightarrow\left\{a_{n}\right\}$ is increasing for $n \geqslant 3$
Since $a_{n}>0 \quad \forall n \geqslant 1$ and $\{a n\}$ increasing $\forall n \geqslant 3$ and $\{a n\}$ is unbid we have $\lim _{n \rightarrow \infty}$ an $=\infty$
ie, $\left\{a_{n}\right\}$ is divergent
(d) Let $u_{n}=\frac{(-4)^{n} n^{2 n}}{(2 n)!+n^{n}}=\frac{\left(-11^{n} \cdot 2^{2 n} \cdot n^{2 n}\right.}{(2 n)!+n^{n}}$

$$
=\frac{\left(-1 n^{( }(2)^{2 n}\right.}{(2 n)!+n^{n}}=\frac{(-1)^{n}(2 n)^{2 n}}{(2 n)!\left(1+\frac{n n^{n}}{(2 n)!}\right)}
$$

consider the subsequence $\left[a_{2 n}\right]^{\ll}$ even terms (positive terms)

$$
\begin{aligned}
a_{2 n} & =\frac{(4 n)^{4 n}}{(4 n)!\left(1+\frac{(2 n)^{2 n}}{(4 n)!}\right)}=\frac{4 n \cdot 4 n \cdot 4 n \cdots \cdot \cdot 4 n}{4 n(4 n-1) \cdots \cdot 3 \cdot 2 \cdot 1} \cdot \frac{1}{\left(1+\frac{\left(2 n n^{2 n}\right.}{(4 n)!}\right)} \\
& \geqslant \frac{1}{1+\frac{(2 n)^{2 n}}{(4 n)!}} \quad \text { since } \frac{2 n^{2 n}}{(4 n)!} \geqslant 1
\end{aligned}
$$

Similarly consider the nepative terms (odd terms)

$$
-\frac{(2 n)^{2 n}}{(2 n)!+n^{n}} \leqslant-\frac{1}{2} \text { from }(*)
$$

Claim: $\lim _{n \rightarrow \infty} a_{n}$ lune.
proof: (Proof by contradiction)
Suppose $\lim _{n \rightarrow \infty} a_{n}=L \leftarrow$ exist then $\lim _{n \rightarrow \infty} a_{2 n}=\lim _{n \rightarrow \infty} a_{2 n+1}=L$
but we have even terms $\geqslant \frac{1}{2}, e_{1} l \geqslant \frac{1}{2}$
and odd terms $\leq-\frac{1}{2}$, ie $\left(\leq-\frac{1}{2}\right.$
So this is a contradiction,
Te, our assumption is wrong, ie, $\lim _{n \rightarrow \infty}$ an die.
3. Let the sequence $\left\{a_{n}\right\}$ be defined by $a_{1}=2$ and $a_{n+1}=\frac{a_{n}}{1+a_{n}}$ for $n \geq 1$.
(a) Show that $\left\{a_{n}\right\}$ is bounded.
(b) Show that $\left\{a_{n}\right\}$ is decreasing.
(c) Find $\lim _{n \rightarrow \infty} a_{n}$.

Soln: (a) $a_{1}=2$

$$
a_{n+1}=\frac{a_{n}}{1+a_{n}}
$$

We have $a_{2}=\frac{a_{1}}{1+a_{1}}=\frac{2}{1+2}=\frac{2}{3}$

$$
a_{3}=\frac{a_{2}}{1+a_{2}}=\frac{2 / 3}{1+2 / 3}=\frac{2}{3} \cdot \frac{3}{5}=\frac{2}{5}
$$

claim: $\quad a n>0 \quad \forall n \geqslant 1$
proof: use induction on $n$.
for $n=1, a_{1}=2>0$
assume $a_{n}>0$ then must show anti>0 but we have $a n+1=\frac{a_{n}>0}{1+a n}>0$
Hence, $a_{n}>0 \quad \forall n \geqslant 1$
claim: $\quad a n \leq 2 \quad \forall n \geq 1$
Induction on $n$.
if $n=1, \quad a_{1}=2 \leq 2$
Assume $a_{n} \leq 2$ then show that $u_{n+1} \leq 2$

We have $a_{n+1}=\frac{a_{n}}{1+a_{n}} \leq \frac{a_{n}}{1} \leq 2$
$\Downarrow$
$a n t t \leq 2$
Hence $0 \leqslant a n \leqslant 2 \quad \forall n=1,2, \cdots, \bar{i}, \quad\left\{a_{n}\right\}$ is bounded
(b) Show $\{a r\}$ is decreasing.

Consider $a_{n+1}=\frac{a_{n}}{\substack{1+a_{n} \\>0}} \leqslant \frac{a_{n}}{1}=a_{n}$

IV,
$a_{n+1} \leq a_{n} \quad \forall_{n}=1,2 \ldots$
$\downarrow$
\{an\} is decreasing-
(C) $\lim _{n \rightarrow \infty} a_{n}=$ ?

By part (a), \{an\} ~ i s ~ b o d ~ a n d ~ b y ~ p a r t ~ ( b ) ~ San\} is decreasing 80 \{an\} ~ i s ~ c o n v e r g e n t , ~ i e ~ $\lim _{n \rightarrow \infty} a_{n}=$ exist. let say $\lim _{n \rightarrow \infty} a_{n}=L$

$$
\lim _{n \rightarrow \infty} a_{n+1}=l
$$

Note:
Since $0 \leq a_{n} \leq 2 \quad \forall n \geqslant 1$,

$$
0 \leq \lim _{n \rightarrow \infty^{\infty}} a_{n}=l \leq 2
$$

since we have $a_{n+1}=\frac{a_{n}}{1+a_{n}}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n+1}=L=\lim _{n \rightarrow \infty} \frac{a_{n}}{1+a_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\frac{1+\lim _{n+\infty} a_{n}}{\neq 0}}=\frac{c}{1+c} \\
& \Rightarrow \quad L=\frac{L}{1+c} \\
& \Rightarrow \quad L^{2}+L-L=0 \\
& \Rightarrow \quad c=0
\end{aligned}
$$

ie, $\lim _{n \rightarrow 1} a_{n}=1=0$.

