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Abstract. Let k be a positive integer that is relatively prime to the order of

the Weyl group of a semisimple complex Lie algebra g. We find the cardinality
of the value sets of the folding polynomials Pk

g (x) ∈ Z[x] of arbitrary rank

n ≥ 1, over finite fields. We achieve this by using a characterization of their

fixed points in terms of exponential sums.

Let p be a prime number and let Fq be a finite field of characteristic p. Given a
polynomial f(x) ∈ Z[x1, . . . , xn], we consider the induced map f : Fnq → Fnq . The
problem of finding the cardinality of the value set f(Fnq ) = {f(x) : x ∈ Fnq } has
been studied in various forms over the years. However, exact formulations for the
cardinality are known only for polynomials in very specific forms. The results that
apply to general polynomials are asymptotic in nature, or provide only estimates.
We refer to the work of Mullen, Wan and Wang [7] for an introduction of this
problem, including several references and historical remarks. In this state of art,
new families of polynomials for which we can find the cardinality of the value sets
are of great interest.

A folding polynomial is a natural generalization of the Chebyshev polynomial [9].
There is only one semisimple complex Lie algebra of rank one, namely A1, and the
corresponding folding polynomials P kA1

are the Chebyshev polynomials. The value
sets of Chebyshev polynomials are first computed by Chou, Gomez and Calderon
[2]. There are three semisimple complex Lie algebras of rank two, namely A2, B2

and G2. We have found the cardinality of the value sets of the folding polynomials
P kA2

in [4] and extended the idea for the polynomials P kB2
and P kG2

in [5]. However,
this idea does not use the underlying algebraic structure in its full power and is
complicated to be extended to higher ranks n ≥ 3.

The folding polynomials P kg are associated with semisimple complex Lie algebras
and we need some notation to describe these polynomials. Let g be a semisimple
complex Lie algebra of rank n and h its Cartan subalgebra, h∗ its dual space, L
a lattice of weights in h∗ generated by the fundamental weights ω1, . . . , ωn, and L
the dual lattice in h. We define Φg : h/L → Cn, induced from the action of W on
L, where Φg = (ϕ1, . . . , ϕn)

ϕj(x) =
∑
w∈W

e2πiw(ωj)(x).

A theorem of Chevalley [1] leads to the following result which was first given by
Veselov, and somewhat later by Hofmann and Withers independently.
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Theorem 1 ([8],[3]). With each semisimple complex Lie algebra g of rank n, there
is associated an infinite sequence of integrable polynomial mappings P kg , k ∈ N
determined from the conditions

Φg(kx) = P kg (Φg(x)).

All coefficients of the polynomials defining P kg are integers.

For a semisimple complex Lie algebra g of rank n with roots λi, i = 1, . . . , n we
identify h = ⊕Cλi (respectively the lattice L = ⊕Zλi) with Cn (respectively Zn).
For w ∈ W , Tw is the n × n matrix representing the endomorphism Tw : L → L
defined by Tw(λi) = w(λi) for each i = 1, . . . , n.

Note that Tw has integer coefficients and det(Tw) = ±1. Let q be a power of a
prime. Let In be the identity matrix of dimensions n × n. An eigenvalue of the
matrix Tw must be a root of unity. As a result, the matrix qIn − Tw is invertible
(over rational numbers) since q ≥ 2 is not a root of unity. The matrix qIn − Tw
and its inverse are the main tools to study the polynomial mappings P kg .

Theorem 2 ([6]). Let g be a semisimple complex Lie algebra of rank n and let W
be its Weyl group. Suppose that p > n. The polynomial mapping P kg : Fnq → Fnq is
a permutation if and only if qIn − Tw is invertible modulo k for each w ∈W .

The main idea of the proof of this theorem is to parametrize the elements of Fnq
by certain rational n-tuples. We summarize the consequences of this theorem, with
some additional details that will be used in the current manuscript, as follows.

Let e be the exponent of the Weyl group and let ζ be a primitive root of unity
of order pe − 1. Let p be a prime ideal p of the cyclotomic extension Q(ζ) lying
over p. There is a one-to-one correspondence

Fix(P qg )←→ Fnq

obtained by reducing the elements in Fix(P qg ) modulo p. This correspondence is
compatible under the action of P kg on both sets. Given a matrix M with rational
entries, we denote the free abelian group generated by its columns by Col(M).
Consider Col((qIn − Tw)−1) which is a subgroup of Qn. This free subgroup is of
rank n since the matrix qIn − Tw is invertible. Moreover it contains Zn. We define

X(w) := Col
(
(qIn − Tw)−1

)
/Zn

as a subgroup of Qn/Zn. We set

X =
⋃
w∈W

X(w).

One can show that the set X is never a group. However it is closed under the
multiplication by integers. The set X parametrizes all the elements in Fix(P qg ),
and therefore all the elements in Fnq , with an n-tuple from Qn/Zn. More precisely,
we have a surjective function

Φg : X → Fix(P qg ).

Unfortunately, this map is not one-to-one. We define an equivalence relation on X
to overcome this problem. For all x,y ∈ X , we set x ∼ y⇐⇒ Φg(x) = Φg(y). This
definition allows us to extend the original one-to-one correspondence as follows:

X/∼ ←→ Fix(P qg )←→ Fnq .
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After this brief summary of [6], we are now ready to study the value set P kg (Fnq )
by using the quotient set (kX )/∼. The quotient set (kX)/∼ and its order is closely
related with the structures of the finite abelian groups X(w). We claim that

X(w) ∼= Zn/Col(qIn − Tw).

To justify this we denote the columns of qIn−Tw by ywi = (y1i, . . . , yni). Using the
elementary column vectors e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1), we can write
ywi = y1ie1 + . . .+ ynien. On the other hand, using the fact that (qIn − Tw)(qIn −
Tw)−1 = In, we obtain that ei = y1ix

w
1 + . . . + ynix

w
n where xwi are the columns

of the matrix (qIn − Tw)−1. Thus there is an isomorphism induced by the map xwi
(mod Zn) 7→ ei (mod Col(qIn − Tw)).

We immediately see from the above isomorphism that |X(w)| = det |qIn − Tw|.
However, it is relatively harder to obtain the cardinality of the set kX(w) for
k > 1 because this quantity is related with the structure of X(w). The structure of
X(w) ∼= Zn/Col(qIn−Tw) can be obtained by the Smith normal form of the matrix
qIn − Tw. Since Z is a principal ideal domain, the Smith normal form exists and
it is a diagonal matrix with entries (1, . . . , 1, a1, . . . , am) for some unique positive
integers a1|a2| · · · |am. We have X(w) ∼= Ca1 × · · · × Cam for cyclic groups Cai of
order ai. We define the quantity

d(k,w) =

m∏
i=1

ai
gcd(k, ai)

.

Obviously |kX(w)| = d(k,w) for each positive integer k. For example, d(1, w) =
|X(w)| for each w ∈W . On the other hand, d(am, w) = 1 for each w ∈W .

Lemma 3. If w1 and w2 are in the same conjugacy class in W , then the Smith
normal forms of matrices qIn − Tw1

and qIn − Tw2
over Z are the same.

Proof. Suppose that U(qIn − Tw1
)V is the Smith normal form of qIn − Tw1

over
Z for some unimodular matrices U and V with integer components. Suppose also
that w−1w1w = w2 for some w ∈W . Then

UTw1
V = T−1

w (UTw1
V )Tw

= T−1
w U(TwT

−1
w )Tw1(TwT

−1
w )V Tw

= ŨTw2
Ṽ .

The matrices Ũ and Ṽ are unimodular matrices with integer components. This
finishes the proof since

U(qIn − Tw1
)V = UqInV − ŨTw2

Ṽ = Ũ(qIn − Tw2
)Ṽ .

�

The Weyl group W naturally acts on X . The action of w on x is given by the
left-multiplication map, i.e. by Twx. In order to prove our main result, we will
use the orbit-stabilizer formula. For this purpose, we shall consider the following
lemma and its generalization.

Lemma 4. If x ∈ X(w1) and Tw2
x ≡ x, then x ∈ X(w1w2).
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Proof. Recall that X(w1) is defined to be the subgroup of Qn/Zn generated by
the columns of the matrix (qIn − Tw1)−1. Thus, we have x ∈ X(w1) if and only if
Tw1x = qx modulo Zn. If Tw2x = x modulo Zn, then

Tw1Tw2x = Tw1x = qx.

Since Tw1Tw2 = Tw1w2 , we have x ∈ X(w1w2). �

The Weyl group W also acts on kX because the scalar matrices kIn commute
with each Tw. The following generalization of the previous lemma is the key argu-
ment to prove the equality part of our main result.

Lemma 5. Let k be a positive integer such that gcd(k, |W |) = 1. If x ∈ kX(w1)
and Tw2x ≡ x, then x ∈ kX(w1w2).

Proof. Let x be an element of kX(w1), then there exists y ∈ X(w1) such that x =
ky. Moreover Tw1

y ≡ qy modulo Zn. Our purpose is to construct y′ ∈ X(w1w2)
such that x = ky′

We start with writing X(w1) = H1 ⊕ H2 as a direct sum of groups H1 and
H2 so that the prime divisors of |H1| are divisors of |W | and gcd(|H2|, |W |) = 1.
This decomposition enables us to use the condition gcd(k, |W |) = 1. We write
y = y1 + y2 with unique yi ∈ Hi.

Let s be the order of w2 in W . Suppose that ss̃ ≡ 1 (mod |H2|) for some integer
s̃. Now we consider

y′ = y1 + s̃(T s−1
w2

+ . . .+ Tw2 + In)y2.

Suppose that Tw2x ≡ x. Clearly, Tw2kyi = kyi for each i. The multiplication
by k restricted to H1 is injective. It follows that Tw2y1 = y1. It is now obvious
that Tw2

y′ = y′ and y′ ∈ X(w1). Lemma 4 implies that y′ ∈ X(w1w2). Moreover

ky′ = ky1 + s̃(T s−1
w2

+ . . .+ Tw2
+ In)ky2

= ky1 + s̃sky2

= ky1 + ky2

= x.

This finishes the proof. �

The stabilizer subgroup of W with respect to x ∈ kX is defined by

Wx = {w ∈W : Twx = x}.

The number of elements in the orbit Wx is found by the orbit-stabilizer formula.
More precisely, we have

|Wx| = |W |
|Wx|

.

Let {w1Wx, . . . , wmWx} be representatives for the cosets in W/Wx. Suppose that
x ∈ X(w). For each coset wiWx, we associate the element xi = Twix ∈ X(w). In
this fashion we obtain a subset {x1, . . . ,xm} ⊆ X(w) with precisely m elements.
Moreover Φg(xi) = Φg(xj) for all 1 ≤ i, j ≤ m.

We are now ready to prove our main result.

Theorem 6. Let q be a power of a prime p and suppose that p > n. Let g be
a semisimple complex Lie algebra of rank n and let W be its Weyl group. Let
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{c1, . . . , cm} be the conjugacy classes in W with representatives wi ∈ ci for each i.
For any positive integer k, we have∣∣P kg (Fnq )

∣∣ ≥ 1

|W |

m∑
i=1

|ci|d(k,wi).

The equality holds if gcd(k, |W |) = 1.

Proof. Recall that we have the following one-to-one correspondences

X/∼ ←→ Fix(P qg )←→ Fnq .

In order to count the number of elements in P kg (Fnq ), it is enough to count the
elements in the quotient set (kX )/∼. We have

kX = k

( ⋃
w∈W

X(w)

)
=
⋃
w∈W

kX(w).

Recall that kX(w) has order d(k,w). We consider the sum
∑
w∈W d(k,w) and

focus on the equivalence classes [x] ∈ (kX )/∼. We claim that each equivalence
class is counted at most |W | times within this sum.

Let [x] be an equivalence class in (kX )/∼ with x ∈ X(w) for some w ∈ W .
Suppose that the stabilizer subgroup Wx has order ` and suppose that W/Wx has
order m. We have |W | = ` ·m. We have x ∈ X(w). If x ∈ X(ww̃) for some w̃ ∈W ,
then we claim that Tw̃x = x. To see this, we note

Tw(Tw̃x− x) = TwTw̃x− Twx = qx− qx = 0

In such a case, we have w̃ ∈ Wx. From this, we obtain that x ∈ X(w) holds for
at most ` different w ∈ W . Moreover, there are m distinct representatives of the
equivalence class [x] in each X(ww̃). This proves the claim that each equivalence
class [x] ∈ (kX )/∼ is counted at most |W | times within the sum

∑
w∈W d(k,w).

The value d(k,w) is identical for group elements in the same conjugacy class by
Lemma 3. That’s why we have∑

w∈W
d(k,w) =

m∑
i=1

|ci|d(k,wi).

This finishes the proof of the inequality part of the theorem.
Now suppose that gcd(k, |W |) = 1. In addition to the previous picture, now we

can use Lemma 5. For each w̃ ∈ Wx, we have x ∈ X(ww̃). This proves the fact
that each equivalence class [x] ∈ (kX )/∼ is counted precisely |W | times within the
sum

∑
w∈W d(k,w). �

Note that the main result of [5], which is valid only for n = 2, is slightly stronger
than this theorem. For the semisimple Lie algebras, A2, B2 and G2, that result
gives a precise value for

∣∣P kg (Fnq )
∣∣ without any restriction on k.

We finish our paper by giving an example.

Example 7. Let g = B2 and let {α1, α2} be a choice of simple roots. The Weyl
group W is generated by the reflections sα1 and sα2 . The action of the Weyl group
over the root system is determined by the Cartan matrix

A =

[
2 −1
−2 2

]
.
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The transpose of the Cartan matrix transforms the fundamental weights to the
fundamental roots, i.e. αi =

∑n
j=1Ajiωj . We have

Tw1
=

[
−1 0
2 1

]
and Tw2

=

[
1 1
0 −1

]
.

The Weyl group W is isomorphic to the dihedral group of order 8. We use the
classical representation of this group for the convenience of the reader. Set a =
Tw1Tw2 and x = Tw1 . Note that the order of a is 4 and xax−1 = a−1. We have
W = {aixj : 0 ≤ i ≤ 3, 0 ≤ j ≤ 1}. There are five conjugacy classes. Set

c1 c2 c3 c4 c5

id a2 x, a2x ax, a3x a, a3.

We find that

(qIn − id)−1 =

[ 1
q−1 0

0 1
q−1

]
and (qIn − a2)−1 =

[ 1
q+1 0

0 1
q+1

]
The columns of these matrices are independent from each other and they generate
abelian groups of orders (q − 1)2 and (q + 1)2, respectively.

The elements x and a2x are in the same conjugacy class and the columns of the
corresponding matrices generate abelian groups of size q2 − 1.

(qIn − x)−1 =

[ 1
q+1 0

2
q2−1

1
q−1

]
and (qIn − a2x)−1 =

[ 1
q−1 0
−2
q2−1

1
q+1

]
The elements ax and a3x are in the same conjugacy class and the columns of

the corresponding matrices generate abelian groups of size q2 − 1.

(qIn − ax)−1 =

[ 1
q+1

−1
q2−1

0 1
q−1

]
and (qIn − a3x)−1 =

[ 1
q−1

1
q2−1

0 1
q+1

]
Finally, the elements a and a3 are in the same conjugacy class and the columns

of the corresponding matrices generate abelian groups of size q2 + 1.

(qIn − a)−1 =

[
q−1
q2+1

−1
q2+1

2
q2+1

q+1
q2+1

]
and (qIn − a3)−1 =

[
q+1
q2+1

1
q2+1

−2
q2+1

q−1
q2+1

]
.

Let us pick a representative wi ∈ ci for each conjugacy class. The Weyl group
W has order eight and there are five conjugacy classes in W . Set

N =
1

8

5∑
i=1

|ci|d(k,wi).

If we fix q = 3, then we obtain the following table:

k d(w1, k) d(w2, k) d(w3, k) d(w4, k) d(w5, k) N

1 4 16 8 8 10 9

2 1 4 2 4 5 7/2

5 4 16 8 8 2 7

The integers k = 1 and k = 5 are relatively prime to 8. Thus the quantity N is
precisely the cardinality of the value set of the folding polynomial P kB2

. On the
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other hand, the integer k = 2 is not relatively prime to 8. Our main result in this
paper implies that

∣∣P 2
B2

(F2
3)
∣∣ ≥ 7/2. Indeed, we have

∣∣P 2
B2

(F2
3)
∣∣ = 5 by the slightly

stronger result in [5].
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