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On the units generated by Weierstrass forms

Ömer Küçüksakallı

Abstract

There is an algorithm of Schoof to find divisors of class numbers of real cyclotomic fields of
prime conductor. In this paper we introduce an improvement of the elliptic analogue of this
algorithm by using a subgroup of elliptic units given by Weierstrass forms. These elliptic units
which can be expressed in terms of x-coordinates of points on elliptic curves enable us to use
the fast arithmetic of elliptic curves over finite fields.

Introduction

The class numbers hp of real cyclotomic fields Q(p) = Q(ζp + ζ−1p ) are extremely hard to
compute. General purpose algorithms are useless as the degree of the extension gets bigger.
There is no practical method for computing the precise value of hp and it is not known even
for relatively small values of p. However Schoof introduces an algorithm to find their divisors
[Sc03]. He achieves this by using the Jordan-Hölder filtration of the Galois module given by
the quotient of the units of Q(p) by the cyclotomic units.

There is an analogy between the real cyclotomic case and the elliptic case. Let K be an
imaginary quadratic field with class number one and let p ⊂ OK be a degree one prime ideal
of norm not dividing 6dK . Let Kp be the ray class field of K of conductor p and let hp be its
class number. There is an explicit subgroup of special units in Kp, called elliptic units, whose
index in the full unit group is precisely hp [St80]. Moreover if N(p)|hp then N(p) divides the
numerator of a nontrivial Hurwitz number [Ro78]. This property is analogous to a property
of cyclotomic extensions. A result of Herbrand states that if p|hp then p divides the numerator
of an even Bernoulli number. This is the main property used by Buhler and Harvey in order
to verify Vandiver’s conjecture for primes up to 163 million [BH11].

We have generalized Schoof’s algorithm to the elliptic case using the analogy between the
cyclotomic and elliptic units [Ku11]. We have encountered an interesting phenomenon, a
counterexample to an elliptic analogue of Vandiver’s conjecture. More precisely we show that
the class number of Kp, with dK = −163 and N(p) = 307, is divisible by 307.

Basic algebraic properties of cyclotomic extensions enable Schoof to order cyclotomic units
modulo a totally split prime according to the Galois action. Unlike the cyclotomic units, there
is no closed formula giving algebraic relations between the conjugates of elliptic units. In order
to overcome this drawback, we introduced an algorithm which does the same in the elliptic case
[Ku11]. However we had to compute minimal polynomials of elliptic units by using complex
numbers with high precision. This is feasible in the range p < 700. However for extensions with
larger conductor, such computations become impractical because of the growth of coefficients
of minimal polynomials.

In this paper we introduce a faster algorithm which orders elliptic units modulo a totally
split prime without computing their minimal polynomials. We achieve this by using a subgroup
of elliptic units given by Weierstrass forms [KL81]. These elliptic units which are defined in
terms of values of Weierstrass ℘-function can also be expressed in terms of x-coordinates of
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points on an elliptic curve. Reducing this curve modulo a certain prime, we obtain an elliptic
curve over a finite field. We need to find a p-torsion point there but this can be achieved by
using the fast arithmetic of elliptic curves over finite fields [Wa08].

Using our improved algorithm, we have checked if there is another counterexample for the
elliptic analogue of Vandiver’s conjecture within the range −dK ∈ {7, 8, 11, 19, 43, 67, 163} and
N(p) < 10, 000. The first step of generalized Schoof’s algorithm indicates that it is very likely
that the class number of Kp, with dK = −43 and N(p) = 5521, is divisible by 5521. We use
the software PARI to do our computations on a computer with a quad-core CPU of 3.10 GHz
with less than one gigabyte of memory allocated. Our computations take less than twelve
hours. Vandiver’s conjecture has been verified for primes up to 163 million [BH11]. Using the
analogy between the Bernoulli and Hurwitz numbers [Ro78], we hope to improve the range
N(p) < 10, 000 in a future paper.

The organization of the paper is as follows: In the first section, we describe certain families
of modular units. In the second section, we use the values of these modular units in order to
obtain elliptic units in Kp. In the third section, we give a brief summary of Schoof’s algorithm
focusing on its first step. Finally in the last section, we explain how we improve the elliptic
analogue of Schoof’s algorithm and give an example to illustrate our computations.

1. Modular Units

In this section, we describe certain families of units in the modular function field. Unless
otherwise stated or proved, the assertions of this section can be found in [KL81]. We recall
some elementary definitions from the theory of modular functions. A modular function of level
N is defined as a meromorphic function on the extended upper half-plane H, which is invariant
under the congruence subgroup Γ(N) of Γ.

We let FN be the field of all modular functions of level N whose q-expansions at every cusp
have coefficients in Q(ζN ). In particular F1 is just Q(j). It is a well known fact that FN is a
Galois extension of F1 with

Gal(FN/F1) ∼= GL2(Z/NZ)/{±I2}

where I2 denotes the 2× 2 identity matrix. Let RN be the integral closure of Z[j] in the
function field FN . Elements of R×N are called modular units (over Z). The units in FN are
precisely those modular functions in FN which have zeros and poles only at the cusps.

Let a = (a1, a2) be a pair of rational numbers such that a ∈ (1/N)Z2 but a 6∈ Z2. We say
that a is primitive of level N if a has order N in ((1/N)Z2)/(Z2).

In order to obtain modular units, one can use the Siegel function. Kubert and Lang use the
notation ga for this function. Since we reserve the letter g for a primitive root modulo p, we
follow Stark’s notation and denote the Siegel’s function as follows

φa(z) = φ(a1, a2, z).

This function has a q-expansion given by an explicit infinite product. It satisfies nice
transformation properties and it follows from these transformation properties that it is an
element of F12N2 . Moreover φ12Na ∈ FN and FN = F1({φ12Na }) [St80].

The modular units in FN consist of the power products
∏
φ
m(a)
a such that the family {m(a)}

of integers satisfies certain quadratic relations. In particular

u(a, c) :=

(
φca
φa

)12N
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is a modular unit of level N if c is an integer relatively prime to N . The Galois action of
α ∈ GL2(Z/NZ) on the unit u(a, c) is given by the basic law

u(a, c)σα = u(aα, c). (1.1)

Now we will consider another family of modular units of level N . Let ℘(z;L) be the
Weierstrass ℘-function. For a = (a1, a2), we define

℘a(z) = ℘(a1z + a2; 〈z, 1〉).

Let a be a primitive point of order N . Let r, r′, s, s′ be integers relatively prime to N such that
r ± r′ and s± s′ are also relatively prime to N . Then

℘ra − ℘r′a
℘sa − ℘s′a

is a modular unit over Z of level N . Its q-expansion has coefficients in Z[ζN ] and begins with
a unit in Z[ζN ] times a fractional power of q.

Now we specialize to the case which will be considered in the following sections. Suppose
that N = p where p is prime. Let a be a primitive point of order p and let g be a primitive
root modulo p. We define the modular unit

v(a, g) :=
℘g2a − ℘ga
℘ga − ℘a

.

Similar to u(a, g), see Equation 1.1, the conjugates of v(a, g) are given by a basic formula. For
any α ∈ GL2(N), we have

v(a, g)σα = v(aα, g).

There is an explicit relation between the units u(a, g) and v(a, g). To see this relation, we
start with a standard elementary formula from the theory of elliptic functions

℘a − ℘b = −σa+bσa−b
σ2
aσ

2
b

where σ(z;L) is the Weierstrass σ-function and σa(z) = σ(a1z + a2; 〈z, 1〉). Kubert and Lang
call σa a Weierstrass form.

The Siegel φ-function and the Weierstrass σ-function are related to each other by an explicit
equation [KL81, Chp. 2]. Combining this relation with the above formula, one can deduce that

℘a − ℘b =
φa+bφa−b
φ2aφ

2
b

η−4ζ∗12p

where η is the Dedekind’s η-function and ζ∗12p is a certain 12p-th root of unity depending on a
and b. Applying the above identity to the modular unit v(a, g)12p, we see that

v(a, g)12p =


φga(g+1)φga(g−1)

φ2
g2a

φ2
ga

φa(g+1)φa(g−1)

φ2
gaφ

2
a


12p

=

 φga(g+1)

φa(g+1)

φga(g−1)

φa(g−1)(
φg2a
φga

φga
φa

)2


12p

.

Recall that u(a, g) = (φga/φa)
12p

. Let n be an integer not divisible by p. If αn = nI2, then
we have u(a, g)αn = u(na, g). We rewrite the equality above using this identity, and obtain

v(a, g)12p =
u(a, g)αg+I2 · u(a, g)αg−I2

(u(a, g)αg · u(a, g))
2 . (1.2)

Let us consider the discrete logarithm function which is defined by logp(x) = k if gk = x
(mod p). This function determines k uniquely modulo p− 1. In order to express the above
relation in a more compact way, we define the following polynomial

γg(x) := xlogp(g+1) + xlogp(g−1) − 2x− 2.
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Note that γg(x) is uniquely determined in the ring Z[x]/(xp−1 − 1). It follows by Equation 1.2
that

v(a, g)12p = u(a, g)γg(αg). (1.3)

The polynomial γg will play an important role when we apply the first step of Schoof’s algorithm
specialized to the elliptic case.

2. Elliptic Units

Let K be an imaginary quadratic field with OK = Z[τ ]. In order to obtain elements in
ramified abelian extensions of K, one can use the values f(τ) of modular functions. As a
consequence of the main theorem of complex multiplication, we have the property that for
every modular function f ∈ FN , the value f(τ), if finite, is contained in the ray class field
K(N) of K with conductor (N), see for instance [St80, Thm. 3] or [Ge01, p. 41].

In analogy with the cyclotomic units, the ray class fields of imaginary quadratic fields have a
subgroup of elliptic units whose index in the unit group is closely related to the class number.
Stark shows that if the class number of K is one and if p ⊂ K is a degree one prime ideal of
norm relatively prime to 6dK then this index is precisely the class number [St80]. Oukhaba
provides a formula which is valid in a more general setup [Ou03]. This is analogous to the
formula of Sinnott about the cyclotomic units [Sin78].

In this paper we focus on the imaginary quadratic fields whose class number is one. It is a
well known fact that the discriminant of such fields are given by

dK ∈ {−3,−4,−7,−8,−11,−19,−43,−67,−163}.

Let W be the number of roots of unity in OK . We have

W =

 6 if dK = −3,
4 if dK = −4,
2 otherwise.

Let p ⊂ OK be a degree one prime ideal of norm p not dividing 6dK . The ray class field Kp

is an abelian extension of K whose Galois group

G = Gal(Kp/K)

is isomorphic to IK/PK,1 by class field theory [Co89]. We have p ≡ 1 (mod W ) and G ∼=
F×p /µW where µW is the group W -th roots of unity considered as a subgroup of F×p .

We denote by σn ∈ G the automorphism of Kp which corresponds to the class of ideals
containing the ideal nOK . If g is a primitive root modulo p, then G = 〈σg〉. Note that the
Galois group G is cyclic of order (p− 1)/W .

We may choose τ =
√
dK/2 or τ = (

√
dK + 1)/2 depending on the parity of the discriminant

so that OK = Z[τ ]. Let g be a primitive root modulo p. The elliptic units produced by Stark
are of the form

ε(a, g) :=
φga(τ)

φa(τ)
· ζ∗12p ∈ O×Kp

for some a = (a1, a2), a primitive pair of order p [St80, p. 229]. If p = (πp) then a can be found
by the equation πp/p = a1τ + a2. The conjugates of these elliptic units can be computed by
Shimura’s reciprocity law. More precisely we have

ε(a, g)σn = ε(an, g) (2.1)

for σn ∈ G by [St80, Thm. 3]. Moreover one can find the precise power of ζ12p for each conjugate
[Ku11].
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Let E(g) be the multiplicative Z[G]-module generated by ε(a, g) together with roots of unity
in OK . The group E(g) is independent of the primitive root chosen, so we put E = E(g). Stark
also shows that [O×Kp

: E ] = hp where hp is the class number of the ray class field Kp [St80,
p. 229].

Now we will construct a special subgroup of E defined in terms of values of Weierstrass
℘-function. This will allow us to use the arithmetic of elliptic curves within our algorithm. We
define

ω(a, g) := v(a, g)(τ) =
℘g2a(τ)− ℘ga(τ)

℘ga(τ)− ℘a(τ)
.

Recall that v(a, g) is a modular unit. Evaluating this function at an imaginary quadratic value,
we obtain an elliptic unit [St80, Lem. 1]. Moreover the special choice of a forces ω(a, g) to be
in Kp similar to ε(a, g). The unit ω(a, g) is related to ε(a, g) as follows:

ω(a, g)12p = v(a, g)12p|z=τ
= u(a, g)γg(αg)|z=τ

=
(
ε(a, g)γg(σg)

)12p
.

The first equality follows from the definition of ω(a, g). The second equality is by Equation 1.3.
The last equality holds because of the compatibility of Galois actions of Gal(Fp/F1) and
Gal(Kp/K). See Equations 1.1 and 2.1.

One can show that Kp ∩K(ζ12p) = K [Ku11, Lem. 1.4]. In other words, the only roots of
unity in Kp are those in K. Therefore it is easy to see by the above equation that ω(a, g) and
ε(a, g)γg(σg) are equal up to a root of unity from OK . We write

ω(a, g) ≈ ε(a, g)γg(σg).

Let W(g) be the multiplicative Z[G]-module generated by ω(a, g). We want to determine
the index of W(g) in E . For a subgroup H of G, define the H-norm map as follows:

NH :=
∑
σ∈H

σ ∈ Z[G].

If H is a proper subgroup and if γg(σg) is divisible by NH , then W(g) is a subset of KH
p , the

fixed field of H. In this case the unit rank of KH
p is smaller than that of Kp and the subgroup

W(g) is not of finite index in E . For example if |G| is even then there is a unique subgroup

H of G of order 2. In this case NH = σ
|G|/2
g + 1 and it divides γg(σg) if γg(−1) = 0. It follows

that the index [E :W(g)] is not finite. In general the index [E :W(g)] is not finite if γg(ζ) = 0
for some |G|-th root of unity ζ (not necessarily primitive). On the other hand we have the
following

Lemma 2.1. Let g be a primitive root modulo p and let ζm be a primitive m-th root of
unity where m = [Kp : K]. If γg(ζ

j
m) 6= 0 for j = 1, . . . ,m− 1, then the index [E :W(g)] is finite

and it is given by

[E :W(g)] =

m−1∏
j=1

γg(ζ
j
m).

Proof. Any elliptic unit in ε0 ∈ E can be written in the following form

ε0 = ζ∗W

m−2∏
i=0

σig(ε(a, g))ci .
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We need to compare the regulator of the unit groups E and W(g). Note that

log |ε0| = e · cT

where e = (log |ε(a, g)|, . . . , log |σm−2g (ε(a, g))|) and c = (c0, . . . , cm−2). We need to express the
value of log |σ(ε0)| in terms of e and cT for a given σ ∈ G. Observe that

log |σg(ε0)| = e · E · cT

where E is the following (m− 1)× (m− 1) matrix:

E =


0
... Im−2
0
−1 −1 · · · −1


(m−1)×(m−1)

Here Im−2 is the identity matrix of dimension (m− 2)× (m− 2). Since σmg = id, we also have
Em = Im−1. It is obvious that the eigenvalues of E are m-th roots of unity except 1.

The regulator of W(g) is given by the determinant

Reg(W(g)) = det[2 log(|σi+jg (ω)|)].

Since ω(a, g) ≈ ε(a, g)γg(σg), we have Reg(W(g)) = Reg(E) · γg(E). It follows that [E :W(g)] =
det(γg(E)). The eigenvalues of the matrix γg(E) are given by γg(ζ

j
m) where j runs through

{1, . . . ,m− 1}. This finishes the proof.

3. Schoof’s algorithm

In this section we give a brief summary of Schoof’s algorithm which investigates the class
numbers hp of real cyclotomic fields Q(p) = Q(ζp + ζ−1p ) of prime conductors p [Sc03]. We
specialize on its first step. The computations in the elliptic case are in complete analogy with
the real cyclotomic case. For details of the elliptic analogue, see [Ku11].

Throughout this section, let G be the Galois group of the extension Q(p)/Q. A finite Z[G]-
module A is a product of its l-parts A⊗ Zl. We write x(p−1)/2 − 1 =

∏
ϕ(x) as a product of

distinct irreducible polynomials ϕ(x) ∈ Fl[x]. Each l-part of A can be decomposed as a product
of eigenspaces Aϕ, each of which admits a filtration with simple subquotients isomorphic to
the residue field Fq ∼= Fl[x]/(ϕ(x)). The order of a simple Jordan-Hölder factor is the order
q = lf where f is the degree of ϕ and its degree d is the order of x modulo ϕ(x).

For any Z[G]-module A, the additive group A⊥ = HomZ[G](A,Z[G]) is a Z[G]-module via
(λf)(a) = λf(a) = f(λa) for λ ∈ Z[G] and a ∈ A. Let U be the unit group of Q(p) and let C
be its subgroup of cyclotomic units. It is a well known fact that hp = [U : C]. Consider the
Z[G]-module B = U/C. Let l be a prime number. Note that hp is divisible by l if and only
if B[l], the subgroup of l-torsion elements of B, admits a nontrivial Jordan-Hölder factor. It
turns out that B[l]⊥ is Jordan-Hölder isomorphic to B[l]. As a result one can alternatively
work with the Galois module B[l]⊥ in order to decide if hp is divisible by l or not.

Let η be a cyclotomic unit generating C as a Z[G]-module and let S be the set of unramified
prime ideals of Q(p)(ζ2l). Each prime ideal R ∈ S lies over a rational prime r ∈ Z such
that r ≡ 1 (mod 2l) and r ≡ ±1 (mod p) by class field theory. To each R ∈ S, we attach
an element fR(η) =

∑
σ∈G cσ(η)σ whose coefficients cσ(η) are uniquely determined modulo

l by the equation (σ−1(η))(r−1)/l ≡ ζcσ(η)l (mod R) for some fixed choice of ζl. Let I be the
augmentation ideal of the group ring Fl[G]. There is an isomorphism of Z[G]-modules

B[l]⊥ ∼= I/{fR(η)|R ∈ S}. (3.1)
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This isomorphism can be obtained by using Kummer theory and Chebotarev’s density theorem.
The idea is to attach Z[G]-homomorphisms to certain Frobenius automorphisms. See [Sc03,
Thm. 2.2] for details. For simplicity, this isomorphism can also be formulated in terms of
polynomials. Replacing a generator σ of the cyclic group G with x, we can consider elements
fR(η) in the ring Fl[x]/(xm − 1) where m = [Q(p) : Q].

The first step of Schoof’s algorithm checks if B⊥, equivalently B, admits any Jordan-Hölder
factor of order q = lf . Set δ = gcd(m, q − 1). The first step of the algorithm is trivial if δ = 1
since Jordan-Hölder factors of degree d = 1 do not occur. If δ > 1, then we construct elements
fR(η) in the ring Fl[x]/(xm − 1) and then reduce them to Fl[x]/(xδ − 1). The algorithm will
be faster if we directly construct elements fR(η) in the latter ring. Being in the augmentation
ideal, each fR(η) is divisible by x− 1. If the greatest common divisor of several fR(η) is trivial,
namely x− 1, at some point, then we conclude that there is no contribution from the factor(s)
ϕ of degree f by using the isomorphism (3.1). This is what happens most of the time and this
part of the algorithm must be as efficient as possible.

If fR(η) is divisible by some specific ϕ for several attempts, for example 10, then we suspect
that B⊥ϕ is nontrivial. In that case, we proceed to the second step of the algorithm in which
we lift elements fR(η) to certain rings in order to determine the possible structure of B⊥ϕ . In
the third and last step it is proved that B⊥ϕ is isomorphic to the module found in the second
part. This last step requires the computation of certain cyclotomic units with high precision
and taking their l-th roots uniquely.

4. Improvement of the algorithm

In this section we explain how we improve the elliptic analogue of Schoof’s algorithm by using
W(g) instead of E . The reader is warned not to be confused with the use of same symbols for
analogous objects in this section and the previous section.

Let K be an imaginary quadratic field of class number one and let p be a prime ideal of
norm relatively prime to 6dK . Let Kp be the ray class field of K of conductor p. Stark shows
that the Galois module

B = O×Kp
/E .

is of order precisely the class number of Kp [St80]. Moreover we have generalized Schoof’s
algorithm to these fields. We find all Jordan-Hölder factors of order less than 2000 in this
module for conductors p with N(p) < 700 [Ku11].

Let l be a prime number and let F = Kp(ζlW ) where W is the number of roots of units in
OK . Let S be the set of unramified degree one prime ideals of F . In other words S is the set of
prime ideals lying over a rational prime r ∈ Z which totally splits in the extension F/Q. Each
such prime ideal R ⊂ F must be lying over a degree one prime ideal r = (πr) of K such that
its generator πr is congruent to a root of unity of OK modulo p. Note that r = N(πr) and we
have r ≡ 1 (mod l) by class field theory as well. Let G be the Galois group of the extension
Kp/K. To each R ∈ S and ε ∈ O×Kp

, we attach an element

fR(ε) =
∑
σ∈G

cσ(ε)σ

in the group ring Fl[G]. The coefficients cσ(ε) are uniquely determined modulo l by the equation

(σ−1(ε))(r−1)/l ≡ ζcσ(ε)l (mod R) for some fixed choice of ζl. In complete analogy with the real
cyclotomic case, see Equation 3.1, there is an isomorphism of Z[G]-modules in the elliptic case
[Ku11, Thm. 2.4]

B[l]⊥ ∼= I/{fR(ε(a, g))|R ∈ S}.
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The major difficulty we have previously encountered is to find the congruence values
σ(ε(a, g)) (mod R) for each σ ∈ G. In order to apply our previous algorithm, we need to
evaluate minimal polynomials of several elliptic units using high precision complex numbers
and then order their roots modulo a totally split prime according to the Galois action. This
is a task feasible in the range p < 700. However for extensions with larger conductor, such
computations become impractical because of the growth of coefficients of minimal polynomials.

We overcome this difficulty in this paper by using units obtained by the special values of
the Weierstrass ℘-function, namely the units ω(a, g), instead of the units ε(a, g). These elliptic
units can also be expressed in terms of x-coordinates of points on an elliptic curve. For this
purpose, we work with an elliptic curve E with complex multiplication by OK .

There is a well known formula which produces elliptic curves with designated complex
multiplication. More precisely, we have [Wa08]

E : y2 = x3 +
3j

1728− j
x+

2j

1728− j
. (4.1)

Here j = j(OK) is the classical j-invariant. Note that this formula is valid in the generic
case, i.e. dK < −4. A quick verification shows that all these curves have good reduction at
any degree one prime ideal of norm not dividing 6dK for imaginary quadratic fields with
−dK ∈ {7, 8, 11, 19, 43, 67, 163}.

There is a natural group structure on E. Let O be the zero point on the elliptic curve E.
Then the group of p-torsion points of E is defined by

E[p] = {P ∈ E : [α]P = O for all α ∈ p}.

The uniformization theorem for elliptic curves says that there exists a unique lattice Λ ⊂ C
such that E is parametrized by the Weierstrass ℘-function ℘(z,Λ) and its derivative [Sil94,
I.4.3]. Since E has complex multiplication by OK = 〈τ, 1〉, we must have Λ = 〈cτ, c〉 for some
constant c. Recall that a is given by πp/p = a1τ + a2, so we have

Pa = (c−2℘a(τ), c−3℘′a(τ)) ∈ E[p].

Moreover we have the following equality which is independent of the constant c, and therefore
the chosen elliptic curve

ω(a, g) =
x([g2]Pa)− x([g]Pa)

x([g]Pa)− x(Pa)
∈ O×Kp

.

In order to generate abelian extensions of K, the values of Weber function at torsion points
can be used. As a consequence of the main theorem of complex multiplication, we have Kp =
K(x(E[p])W/2). See [Sil94, II.5.6] for instance. In order to express the units ω(a, g) in terms
of x-coordinates of p-torsion points of E, we restrict ourselves to the case that W = 2.

The isogeny [g] : E → E is explicit and enables us to relate conjugates in the set x(E[p])
algebraically. Moreover this action is compatible with the Galois action of σg ∈ G, see [La87,
Chp. 10]. For each integer i ≥ 0, we have

x([gi]Pa)σg = x([gi+1]Pa).

Consider a degree one prime ideal r = (πr) of K which totally splits in Kp. The isogeny
[πr] : E → E is a rational function with coefficients from the Hilbert class field H. In our case
we have simply H = K. Reducing [πr] modulo r we obtain a map on E/Fr where r = N(r).
Without loss of generality we have [πr] = Frobr [Sil94, II.5.4]. If the reduced map is not the
Frobenius map than we can twist E by a quadratic nonresidue modulo r. See the example at
the end of this section for an illustration of this phenomenon.

The prime ideal r ⊂ OK splits completely in Kp, thus we may assume πr = απp + 1 for some
α ∈ OK by class field theory. It follows that E(Fr) = Ker([απp]). Thus if we start with an
arbitrary point P0 of E(Fr) and compute [α]P0, we must obtain a point of E[p] modulo r.
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For simplicity suppose that πr = kπp + 1 for some positive integer k so that we can apply the
isogeny [k] to the point P0 easily. If the resulting point [k]P0 is trivial then we can repeat our
computation until we find a nontrivial p-torsion point. Observe that we do not need to know
the minimal polynomial of elements generating the ray class field Kp for this computation.

As we have seen above, we can obtain a nontrivial p-torsion point (x0, y0) in E(Fr). Moreover
using the fast arithmetic of elliptic curves, we can also compute

(xi, yi) ≡ [gi](x0, y0) (mod r).

Let R be a prime ideal of Kp lying over r ⊂ OK such that ω(a, g) ≡ (x2 − x1)/(x1 − x0)
(mod R). In general we have

ω(a, g)σ
i
g ≡ x2+i − x1+i

x1+i − xi
(mod R)

for all integers i ≥ 0. In other words for each σ ∈ G, we can find the congruences σ(ω(a, g))
(mod R). This enables us to obtain fR(ω(a, g)) in the ring Fl[x]/(xm − 1). Unfortunately this
is a multiple of the element fR(ε(a, g)). We have

fR(ω(a, g)) = γg · fR(ε(a, g)).

However this is not a big problem. When we perform the first step of the algorithm with
the elements fR(ω(a, g)) instead of fR(ε(a, g)), all we need to do is to disregard those factors
coming from γg. We can possibly fail to detect some factors appearing in the Jordan-Hölder
filtration of B[l]⊥. Thus we shall repeat our computations for different values of g so that all
possible factors ϕ are checked.

In practice it is not hard to find a suitable primitive root g modulo p to check if B⊥ϕ is
trivial or not. It is sufficient to choose g such that gcd(γg, ϕ) = 1 in the ring Fl[x]. We have
encountered no example so that ϕ divides every γg in Fl[x]. Even in the worst cases, such as
small values of deg(ϕ) and l, there is a big majority of primitive roots g which give γg relatively
prime to ϕ in Fl[x].

Now we give an example to illustrate what happens when the algorithm is run. We focus on
the case l = p.

Example 1. Let K = Q(
√
−43) and let p be a prime ideal of norm p = 11. In this example

we will show that hp is not divisible by p. Since [Kp : Q] = 10, a relatively small degree, one
can find that the class number hp is trivial in a reasonable amount of time with PARI/GP
[PARI]. However this is not the case if p is large, for example if p > 50.

The Jordan-Hölder factors of B[p]⊥ come only from the irreducible factors ϕ of xm − 1 in
Fp[x] where m = [Kp : K] = 5. Recall that Jordan-Hölder factors of degree one do not appear
so we can exclude ϕ = x− 1. Let g = 2, a primitive root modulo p. We find by Lemma 2.1 that
[E :W(g)] = 11. Note that γg = x10 + x8 − 2x− 2 and gcd(xm − 1, γg) = x+ 7 in Fp[x]. Now
we check if B[p]⊥ admits any Jordan-Hölder factors coming from the divisors of

xm − 1

(x− 1)(x+ 7)
∈ Fp[x].

In this case every irreducible factor of xm − 1 is linear. As a result we can fix δ = m and check
for all ϕ, except x+ 7, simultaneously.

Fix πp = (
√
−43− 1)/2 such that N(πp) = p. Consider the ideal r ⊂ OK generated by πr =

kπp + 1 with k = 11. This turns out to be a prime ideal of norm r = 1321. Note that r ≡ 1
(mod p). We will work with the elliptic curve E : y2 = x3 +Ax+B where A and B are as
in Equation 4.1. This curve has complex multiplication by OK . Let Ē be the reduction of E
modulo r. Over Fr, we have A ≡ 1190 and B ≡ 353. Consider the point P0 = (2, 182) ∈ Ē(Fr).
We find that [k]P0 is not in Ē[p] since [pk]P0 6= O. This means that the trace of the Frobenius
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map is of opposite sign. Since 7 is a quadratic nonresidue modulo r, the following elliptic curve
gives a suitable quadratic twist of Ē:

Ē′ : y2 = x3 + 72Ax+ 73B.

Now we consider the point P ′0 = (1, 475) in Ē′(Fr). In this case [k]P ′0 = (914, 1129) is obviously
in Ē′[p]. One can verify this also by computing [pk]P ′0 = O. If we had obtained [k]P ′0 = O then
we would change the x-coordinate and try again.

We set (x0, y0) = [k]P ′0 and compute (xi, yi) = [gi](x0, y0) for 0 ≤ i < m:

i 0 1 2 3 4
xi 914 943 765 1220 35
yi 1129 139 395 112 302

Now we are ready to find fR(ω(a, g)). A p-th root of unity in Fr is obtained by raising a
primitive root in Fr, say 13, to its (r − 1)/p-th power. Let R be the unique ideal of F = Kp(ζp)
lying over r such that x(Pa) ≡ x0 and ζp ≡ 13(r−1)/p modulo R. One can choose R differently,
however this only changes fR up to a unit. See Schoof for details [Sc03, Thm. 3.2].

The constant term of fR(ω(a, g)) is obtained by(
x2 − x1
x1 − x0

)(r−1)/p

≡ ζ5p (mod R).

Similarly other coefficients can be found and we have fR(ω(a, g)) = 6x4 + 4x3 + x2 + 6x+ 5.
In the ring Fp[x]/(xm − 1), we have

gcd

(
xm − 1

(x− 1)(x+ 7)
, fR(ω(a, g))

)
= 1.

Thus we conclude that there is no contribution to B[p]⊥ from the factors of xm − 1 except
x+ 7.

We have to check for ϕ = x+ 7 separately. For this purpose, we choose g = 6. In this case
γg(x) is relatively prime to x+ 7 in Fp[x]. We can similarly find an element fR(ω(a, g)) as we
have done above. If the resulting element is co prime to x+ 7, we can conclude that there is
no contribution from this factor either. This is what happens if we repeat our algorithm with
the same underlying prime ideal r but with this different g. As a result we find that the order
of B[p]⊥ is not divisible by p and therefore hp is not divisible by p.

Previously, we have found all Jordan-Hölder factors of order less than 2000 in the Galois
module B for conductors p with N(p) < 700. In particular we show that the class number of Kp,
with dK = −163 and N(p) = 307, is divisible by 307 [Ku11]. Using our improved algorithm,
we have checked for another counterexample of the elliptic analogue of Vandiver’s conjecture
within the range−dK ∈ {7, 8, 11, 19, 43, 67, 163} and 700 < N(p) < 10, 000. We use the software
PARI to do our computations on a computer with a quad-core CPU of 3.10 GHz with less than
one gigabyte of memory allocated. Our computations take less than twelve hours.

The first step of the algorithm indicates that it is very likely that the class number of Kp,
with dK = −43 and N(p) = 5521, is divisible by 5521. In order to prove this one may attempt
to use the method given in our previous paper [Ku11, Example 2.9]. For this, we need to
obtain certain elliptic units with high r-adic precision, take their 5521-st roots uniquely and
verify that the resulting polynomial is integral. Those computations rely on the PARI command
factorpadic and it is not feasible to use the same method in this example which requires a
much higher precision.

Vandiver’s conjecture has been verified for primes up to 163 million [BH11]. Using the
analogy between the Bernoulli and Hurwitz numbers [Ro78], we hope to improve the range
N(p) < 10, 000 in a future paper.
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