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Abstract. We give an alternative computation of the value sets of Dickson

polynomials over finite fields by using a singular cubic curve. Our method is

not only simpler but also it can be generalized to the non-singular elliptic case.
We determine the value sets of Lattès maps over finite fields which are rational

functions induced by isogenies of elliptic curves with complex multiplication.

Introduction

The conditions for arbitrary functions of finite fields Fq to be bijections are
rather complicated. Thus special types of functions are of great interest. One of
the most important such family is the Dickson polynomials of the first type

Dn(x, a) =

bn/2c∑
j=0

n

n− j

(
n− j
j

)
(−a)jxn−2j .

It is a well-known fact that Dn(x, a), a ∈ F∗q , is a bijection of Fq if and only if

(n, q2 − 1) = 1 [LN83]. A harder problem is to determine the size of the value set

{Dn(x, a) : x ∈ (Fq)}.
If Dn(x, a) is not a bijection, one may ask how far it is away from being a bijection.
For an arbitrary polynomial, there is no easy formula giving the cardinality of the
value set. However Chou, Gomez-Calderon and Mullen achieve finding a formula for
Dickson polynomials [CGM88] by tedious computations. In this paper we will give a
shorter proof of this formula by using the singular cubic curve C : y2 = 4x3+x2 and
the real cyclotomic fields. Our alternative proof fits into a larger body of work as
well. Recently Gassert [Ga14] determined the graphs for polynomials Dn(x, 1). The
unusual symmetry of such graphs can be explained alternatively by Theorem 1.4.

There is a special family of rational functions, called Lattès maps, whose dynam-
ics over finite fields show more regularities than that of arbitrary rational functions
[PG11]. Lattès maps are rational functions covered by elliptic curve endomor-
phisms and have been studied for over 100 years. See [Mi06] for a nice introduction
to Lattès maps over complex numbers. In recent years there have been results over
finite fields as well, see [Ug12], [Ug13] for instance. In addition, bijectivity of Lattès
maps over finite fields is investigated in [Mü99]. Lattès maps play an important
role to solve Schur problem for rational functions [GMS03].

In the second part of this paper we generalize our alternative interpretation for
Dickson polynomials to Lattès maps. We give a sufficient and necessary condition
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for these maps to be bijections. Moreover we show that the value set formula for
Dickson polynomials can be generalized to such functions. More precisely we have
the following: Let K be an imaginary quadratic field with Hilbert class field H.
Let

E : y2 = x3 + ax+ b, a, b ∈ H
be an elliptic curve with complex multiplication by OK . The uniformization theo-
rem for elliptic curves says that there exists a lattice Λ so that ℘(z) parametrizes
E. In other words the map C/Λ → E given by z 7→ (℘(z), ℘′(z)) is a complex
analytic isomorphism. For each α ∈ OK , define Fα by

Fα(℘(z)) = ℘(αz)

where Fα(t) is a rational function with coefficients from H [Si94, II.2.2]. Suppose
that E has good reduction Ē at P, a prime ideal of H lying over p. Let p = P∩K
and let n ≥ 1 be an integer so that pn is principal. Set q = |OK/p|n, a power of the
prime p. Adding a point at infinity, we obtain the projective 1-space P1(Fqm) =
Fqm ∪ {∞}. For each integer m ≥ 1, we have a rational map

F̄α : P1(Fqm)→ P1(Fqm)

where F̄α is the reduction of the rational function Fα ∈ H(t) modulo P. Corol-
lary 2.7 provides a formula which gives the size of the value set {F̄α(x) : x ∈ Fqm}
in terms of norms of ideals. Using this we give a sufficient and necessary condition
for F̄α being a bijection, see Corollary 2.8.

1. Real Cyclotomic Case

Let ωZ be the additive subgroup of C generated by ω = 2πi. Define the function
φ(z) by the series

φ(z) =
∑
λ∈ωZ

1

(z − λ)2
.

The following lemma is key to illustrate the analogy between the real cyclotomic
case and the elliptic case.

Lemma 1.1. The function φ(z) has the following properties.

(1) The series defining φ(z) converges absolutely and uniformly on every com-
pact subset of C − ωZ. It defines a meromorphic function on C having a
double pole with residue 0 at each λ ∈ ωZ and no other poles.

(2) The Laurent series for φ(z) about z = 0 is given by

φ(z) = −
∞∑
j=0

(2j − 1)
B2j

(2j)!
z2j−2

where B2j is the Bernoulli number.
(3) The function φ(z) is even and periodic with period ω = 2πi. Moreover

φ(z) =
ez

(ez − 1)2

and there is an algebraic relation between φ(z) and its derivative φ′(z)

φ′(z)2 = 4φ(z)3 + φ(z)2.
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Proof. (1) Choose Λ = [1, ω]. The series defining the Weierstrass ℘-function (rela-
tive to lattice Λ) converges absolutely and uniformly on every compact subset C−Λ
[Si09, VI.3.1]. Note that∣∣∣∣ 1

(z − λ)2

∣∣∣∣ ≤ ∣∣∣∣ 1

(z − λ)2
− 1

λ2

∣∣∣∣+

∣∣∣∣ 1

λ2

∣∣∣∣ .
and ∑′

λ∈ωZ

∣∣∣∣ 1

λ2

∣∣∣∣ =
2ζ(2)

(2π)2
<∞

where the sum is taken over non-zero elements of ωZ. Since ωZ is a subset of
Λ, we conclude that the series defining the function φ(z) converges absolutely and
uniformly on every compact subset of C − ωZ. Thus it defines a meromorphic
function on C having a double pole with residue 0 at each λ ∈ ωZ and no other
poles.

(2) Using the Laurent series expansion of 1/(z − kω)2 about z = 0, it is easy to
see that

2

∞∑
j=1

(2j − 1)
( z

kω

)2j−2

=
(kω)2

(z − kω)2
+

(kω)2

(−z − kω)2
.

for each k 6= 0 and 0 < |z| < 2π. Using the definition of φ(z), we see that

φ(z) =
∑
λ∈ωZ

1

(z − λ)2
=

1

z2
+ 2

∞∑
k=1

1

(kω)2

∞∑
j=1

(2j − 1)
( z

kω

)2j−2

.

Putting ζ(2j) =
∑∞
k=1 1/(k2j), we obtain

φ(z) =
1

z2
+ 2

∞∑
j=1

(2j − 1)
ζ(2j)

ω2j
z2j−2.

It is a well known fact that

ζ(2j) = −1

2

ω2j

(2j)!
B2j

for integers j ≥ 1 [La87, Chapter 4]. This finishes the proof of the second part.
(3) We start with the defining series of Bernoulli numbers

z

ez − 1
=

∞∑
j=0

Bj
j!
zj .

Bernoulli numbers with odd index are zero except B1 since the function z/(ez −
1) + z/2 is even. Setting g(z) = 1/(ez − 1) + 1/2, we see that

g(z) =

∞∑
j=0

B2j

(2j)!
x2j−1.

Since g′(z) = −φ(z), we obtain φ(z) = ez/(ez − 1)2. Note that φ′ = −2φg and
g2 = φ + 1/4. Using these identities, it is easy to establish the algebraic relation
(φ′)2 = 4φ3 + φ2. �
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The properties of φ(z) listed above are very similar to those satisfied by the
Weierstrass ℘-function [Si09, VI.3.1]. Moreover projective curves parametrized by
these functions have similar structures. Consider the curve C given by

C : y2 = 4x3 + x2.

This is a singular cubic curve which has a node at the origin with two distinct
tangent lines y ± x = 0. The non-singular part of C, denoted by Cns, is the set
of non-singular points of C. The composition law on elliptic curves makes Cns

into an abelian group. Moreover the map (x, y) 7→ y−x
y+x from Cns to C∗ gives an

isomorphism of abelian groups [Si09, III.2.5]. We have the following commutative
diagram

C/ωZ Cns C∗
z 7→ (φ(z), φ′(z))

z 7→ ez

(x, y) 7→ y−x
y+x

The multiplicative group C∗ has a subgroup consisting of elements of norm 1,
namely the unit circle. Let us denote the corresponding subgroup by C1 ⊆ Cns.
Note that ω/n ∈ C/ωZ corresponds to ζn = e2πi/n ∈ C∗. For each integer n,
the endomorphism [n] : C1 → C1 is given by (φ(z), φ′(z)) 7→ (φ(nz), φ′(nz)). The
n-torsion subgroup of C1, denoted C1[n], is the set of points of order n in C1,

C1[n] = {P ∈ C1 : [n]P = O}.
For any integer n ≥ 1, define fn by the following functional equation

fn(φ(z)) = φ(nz) = x([n]P ).

The function fn is closely related with the Dickson polynomial. See [LN83, Chapter
7] for a good introduction to this special family of polynomials. We recall that the
n-th Dickson polynomial of the first kind Dn(x, a) is defined by

(1.1) Dn(x, a) =

bn/2c∑
j=0

n

n− j

(
n− j
j

)
(−a)jxn−2j .

In our paper we fix a = 1 and use Dn(x) = Dn(x, 1) for simplicity. The fundamental
property of Dickson polynomials is its functional equation Dn(y+y−1) = yn+y−n.
Observe that

Dn

(
1

φ(z)
+ 2

)
= Dn(ez + e−z) = enz + e−nz =

1

φ(nz)
+ 2.

It follows that

(1.2) fn(t) =
1

Dn( 1
t + 2)− 2

.

Since Dn(t) is a polynomial, fn(t) is a rational function. Moreover its denominator
is related with the n-torsion points of C1. For any positive integer n, define

ψn(t) = n2
∏′

P∈C1[n]

(t− x(P ))

where the product is taken over the [n]-torsion points of C1 except the point at
infinity. We regard the empty product to be equal to 1, i.e. ψ1(t) = 1.
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Lemma 1.2. Let n be a positive integer. The polynomial ψn(t) is a degree n − 1
polynomial with integer coefficients whose constant term is equal to 1. Moreover we
have

fn(t) =
tn

ψn(t)
.

Proof. It is easy to see by (1.2) that the numerator of the rational function fn(t)
can be taken tn since deg(Dn) = n. Then the denominator is a polynomial of
degree n− 1 with integer coefficients whose constant term is equal to 1.

Observe that the function φ(nz) has a double pole at every integer multiple of
ω/n. Let ψn(t) be as above, then

ψn(φ(z)) = n2
n−1∏
j=1

(
φ(z)− φ

(
jω

n

))
for any integer n ≥ 1. Similar to the Weierstrass ℘-function [Co89, 10.4], φ(z1) =
φ(z2) if and only if z1 ± z2 ∈ ωZ. Note that the function φ(nz)ψn(φ(z)) does not
have any pole except z such that 2z ∈ ωZ. However

φ′(z) = −e
z(ez + 1)

(ez − 1)3
= 0

if and only if 2z ∈ ωZ and z 6∈ ωZ. As a result φ(z)− φ(ω/2) has a double zero at
points z = kω+ω/2 for every integer k ∈ Z and the function φ(nz)ψn(φ(z)) has no
poles except the points z ∈ ωZ. We cancel these poles by translates of φ(z). Since
φ(z) is never zero, the meromorphic function

φ(nz)ψn(φ(z))

φ(z)n

has no poles. One can show that this quotient approaches 1 as Re(z) → ±∞
since φ(z) = ez/(ez − 1)2. Therefore it is an entire function which is bounded.
By Liouville’s theorem it must be constant. Comparing the leading terms of both
numerator and denominator, we see that it must be equal to 1. This finishes the
proof. �

Let n be a positive integer. Consider C1[n]x = {x(P ) : P ∈ C1[n]}, the set of
x-coordinates of n-torsion points of C1. Note that

φ

(
jω

n

)
=

ζjn

(ζjn − 1)2
=

1

ζjn + ζ−jn − 2

where ζn = e2πi/n is a primitive n-th root of unity. Therefore the n-th real cy-
clotomic field Q(ζn + ζ−1

n ) can be obtained by adjoining elements of C1[n]x to Q.
Recall that such a number field can also characterized as the ray class field Q(n) of
Q of conductor (n) [Co89, § 8]. Thus we have Q(C1[n]x) = Q(n).

The number of elements in C1[n]x play an important role in our proofs. Let us
denote the greatest common divisor of integers n1 and n2 by (n1, n2). We have the
following

Lemma 1.3. For any integer n ≥ 1, we have |C1[n]x| = (n+ (n, 2))/2.
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Proof. Recall that C1 is a subset of the projective curve C : y2 = 4x3 + x2. For
points P1, P2 ∈ C̄1, we have x(P1) = x(P2) if and only if P1 = [±1]P2. On the
other hand x(P ) = x([±1]P ) if and only if P ∈ C1[2]. As a result,

|C1[n]x| =
|C1[n] \ C1[(n, 2)]|

2
+ |C1[(n, 2)]| = n− (n, 2)

2
+ (n, 2).

�

The following theorem enables us to see the projective space P1(Fq) as a union
of Z-modules where the module action is given by natural group operation on the
curve C̄1, the reduction of C1 modulo p.

Theorem 1.4. Let Fq be the finite field of order q and characteristic p. Let P be
a prime ideal of the ray class field Q(q2−1) lying over p. The elements of C1[q± 1]x
belong to Q(q2−1). Moreover their reduction modulo P gives all elements of P1(Fq)
except zero. In other words we have

P1(Fq) = C̄1[q − 1]x ∪ C̄1[q + 1]x ∪ {0}.

Proof. It is easy to see that Dp(t) ≡ tp (mod p) by (1.1). Let q be a power of p.
Since Dab = Da ◦Db we have Dq ≡ tq (mod p). It follows by (1.2) that

fq(t) ≡ tq (mod p).

Thus there are precisely q + 1 distinct solutions of fq(t) = t in P1(Fq). It follows
that fq(t) = t has q + 1 distinct solutions on the Riemann sphere P1(C) as well.

Given a point P ∈ C1[q±1], we have [q]P = [±1]P . As a result fq(x(P )) = x(P ).
We claim that the set of elements in P1(C) satisfying the equation fq(t) = t, except
0, is given by

C1[q − 1]x ∪ C1[q + 1]x.

To justify our claim, we show that this union has q distinct elements. If q is even
then C1[q − 1]x and C1[q + 1]x are disjoint except for infinity. Since |A ∪ B| =
|A|+ |B| − |A ∩B| for arbitrary sets A and B, we see that there are

q − 1 + 1

2
+
q + 1 + 1

2
− 1 = q

elements in the union by Lemma 1.3. If q is odd then, C1[q−1]x∩C1[q+1]x = C1[2]x.
In this case there are

q − 1 + 2

2
+
q + 1 + 2

2
− 2 = q

elements in the union as well. �

This characterization makes it easier to investigate rational functions induced by
endomorphisms of C1. Given a function f : P1(Fq)→ P1(Fq), we define its value
set

Vf = {f(x) : x ∈ P1(Fq)}.
As an application of the above theorem, we give the following corollary.

Corollary 1.5. For each integer n ≥ 1, define the integers

n− =
q − 1

(n, q − 1)
, n+ =

q + 1

(n, q + 1)

and define the constant

η =
(n−, 2) + (n+, 2)

2
− (n−, n+).
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We have Vfn = C̄1[n−]x ∪ C̄1[n+]x ∪ {0} and |Vfn | = (n− + n+)/2 + η + 1.

Proof. The group homomorphism [n] : C1[q−1]→ C1[q−1] has kernel C1[(n, q−1)].
Its image is the cyclic subgroup of order n− = (q− 1)/(n, q− 1). In other words we
have a surjection fn : C1[q − 1]x � C1[n−]x. It is similar for [q + 1]-torsion points.
Using Theorem 1.4, we conclude that

Vfn = C̄1[n−]x ∪ C̄1[n+]x ∪ {0}.

Now we want to determine the size of this union. For any point P ∈ C̄1, the
x-coordinate x(P ) is never zero. Thus, we have

|Vfn | = |C1[n−]x|+ |C1[n+]x| − |C1[(n−, n+)]x|+ 1.

We obtain the formula given in the corollary by Lemma 1.3. Note that η = 0 if
n− + n+ is even and η = 1/2 if n− + n+ is odd. See Example 1.8. �

The rational function fn(t) can be obtained from the polynomial Dn(t) via linear
substitutions together with 1/t, see equation (1.2). We conclude that

|Vfn | = |VDn |.

A simple consequence of this equality is that fn is a bijection of P1(Fq) if and only
if Dn is a bijection of P1(Fq). Moreover, since both functions fix infinity, the same
is true if they are considered as functions of Fq.

Dickson polynomials provide one of the few classes of polynomials over finite
fields whose value sets have been determined. The cardinality of the set {Dn(x) :
x ∈ Fq} was first computed by Chou, Gomez-Calderon and Mullen [CGM88]. Using
Lemma 1.5 and the above remark, we recover their result.

Corollary 1.6. The cardinality of the set {Dn(x) : x ∈ Fq} is (n− + n+)/2 + η.

Since n− = (q − 1)/(n, q − 1) and n+ = (q + 1)/(n, q + 1), we see from this
corollary that Dn is a bijection if and only if (n, q − 1) = 1 and (n, q + 1) = 1.
This is possible if and only if (n, q2 − 1) = 1. From this we recover a well-known
condition for Dickson polynomials to be bijective [LN83, 7.16].

Corollary 1.7. The Dickson polynomial Dn(x) : Fq → Fq is a bijection if and
only if (n, q2 − 1) = 1.

We finish this section by giving an example to illustrate our computations.

Example 1.8. Let us consider F9 = F3[i] where i2 = 2. Let P be a prime ideal of
Q(80) lying over 3. By Theorem 1.4, we have P1(F9) = C̄1[8]x∪ C̄1[10]x∪{0}. The

map fn is a bijection of P1(F9) if and only if (n, 80) = 1. Let us consider n = 2k

so that the resulting map is not bijective. It is easy to compute that D2(t) = t2− 2
by the definition of Dickson polynomials (1.1). Using the equation (1.2), we obtain
f2(t) = t2/(4t+ 1). We have

{2± i, 1, 2,∞}︸ ︷︷ ︸ f2−→ {1, 2,∞}︸ ︷︷ ︸ f2−→ {2,∞}︸ ︷︷ ︸ f2−→ {∞}︸︷︷︸ f2−→ · · ·

C̄1[8]x C̄1[4]x C̄1[2]x C̄1[1]x

and

{±i, 1± i, 2,∞}︸ ︷︷ ︸ f2−→ {1± i,∞}︸ ︷︷ ︸ f2−→ · · ·

C̄1[10]x C̄1[5]x
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The invariants of Corollary 1.5 specified to this example are given in the table
below.

n 20 21 22 23 · · ·
n− 8 4 2 1 · · ·
n+ 10 5 5 5 · · ·
η 0 1/2 1/2 0 · · ·
|Vfn | 10 6 5 4 · · ·

2. Elliptic Case

In this section we will use the analogy between φ(z) = ez/(ez − 1)2 and Weier-
strass ℘-function in order to generalize our ideas given in previous section to the
elliptic case. We will investigate the structure of projective space P1(Fq) via the
torsion points of elliptic curves with complex multiplication. At the end we will
find the value sets of Lattès maps which are rational functions induced by isogenies
of elliptic curves as an application.

Let K be an imaginary quadratic field with ring of integers OK . If a is a non-zero
ideal of OK then the quotient ring OK/a is finite and the norm of a is defined to be
N(a) = |OK/a|. The norm of an element α ∈ K is given by N(α) = αα′ where α′

is the complex conjugate of α. It is a well-known fact that N((α)) = N(α) where
(α) = αOK is the principal ideal generated by α.

Let H be the Hilbert class field of K, and let

E : y2 = x3 + ax+ b, a, b ∈ H

be an elliptic curve with complex multiplication by OK . The Weierstrass ℘-function
(relative to Λ) is defined by the series

℘(z) =
1

z2
+
∑′

λ∈Λ

(
1

(z − λ)2
− 1

λ2

)
where the sum is taken over all nonzero elements of Λ. The uniformization theorem
for elliptic curves says that there exists a lattice Λ so that ℘(z) parametrizes E
[Si09, VI.5.1]. In other words the map C/Λ→ E given by (℘(z), ℘′(z)) is a complex
analytic isomorphism. For each α ∈ OK , define Fα by

Fα(℘(z)) = ℘(αz) = x([α]P ).

This is the analogy with Dickson’s polynomial. If α ∈ Z then one can compute
Fα recursively [Si09, Exercise 3.7]. For general α ∈ OK it is done by Satoh [Sa04]
who separates the problem into several cases and gives a recurrence relation for
each case. The function Fα can also be computed as follows in a similar fashion
with fn.

Lemma 2.1. Let O be the point at infinity of E and P0 be a point on E with
x(P0) = 0. Then for any α ∈ OK , we have

Fα(t) =

∏
[α]P=P0

(t− x(P ))

α2
∏′

[α]P=O

(t− x(P ))
∈ H(t).
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Proof. We know that Fα(t) = A(t)/B(t) where A and B are relatively prime poly-
nomials with deg(A) = deg(B) + 1 = N(α) [Co89, 10.14]. Moreover A(t) and B(t)
are polynomials with coefficients from H [Si94, II.2.2].

Suppose that E : y2 = x3 +ax+ b is parametrized by ℘(z), relative to the lattice
Λ. If z 6∈ Λ, then B(℘(z)) = 0 if and only if αz ∈ Λ. Recall that the Weierstrass
℘-function has a double pole at every lattice point λ ∈ Λ. As a result ℘(αz) has
a double pole at every z such that αz ∈ Λ. We have ℘(z1) = ℘(z2) if and only if
z1 ± z2 ∈ Λ [Co89, 10.4]. Note that the function

℘(αz)
∏′

[α]P=O

(℘(z)− x(P ))

does not have any pole except z such that 2z ∈ Λ. If z 6∈ Λ, then ℘′(z) = 0 if and
only if 2z ∈ Λ [Co89, 10.5]. Therefore the function above has poles only at lattice
points.

In order to cancel these poles, we use translates of ℘(z). Note that the function
above has a zero at each z corresponding to a point P such that [α]P = P0. Consider
the meromorphic function

℘(αz)
∏′

[α]P=O
(t− x(P ))∏

[α]P=P0

(t− x(P ))
.

We claim that this quotient has no poles. It is enough to show that the denominator
does not introduce any poles other than the lattice points. Let Q1, Q2 be two points
of E such that [α]Qi = P0 for i = 1, 2. If x(Q1) 6= x(Q2) whenever Q1 6= Q2 then
we are done. Otherwise Q1 and Q2 must be inverses of each other. It follows that
P0 ∈ E[2] and as a result y(P0) = 0. If P0 = (℘(z0), ℘′(z0)), then the numerator of
the above quotient has a double zero at z0. This finishes the proof of our claim.

Therefore the quotient above does not have any poles and therefore it is an entire
function. Moreover it is bounded since it is doubly periodic. By Liouville’s theorem
it must be constant. Comparing the leading terms of the Laurent series of both
numerator and denominator, wee see that this constant must be equal to 1/α2. �

For any ideal a of OK , the group of a-torsion points of E is defined by

E[a] = {P ∈ E : [α]P = O for all α ∈ a}.

Notice that the definition of E[a] depends on the isomorphism OK ∼= End(E).
We always use the isomorphism [·] : OK → End(E) such that for any invariant
differential ωE of E, [α]∗ωE = αωE for all α ∈ OK [Si94, II.1.1]. We simplify our
notation for principal ideals by E[(α)] = E[α].

In the previous section we have used maps fq whose reduction modulo p gives
the Frobenius map. Now we construct analogous maps Fπ in the elliptic case. Let
P be a prime ideal of H lying over p such that E has good reduction at P. Consider
the isogeny [p] : E → E which is defined over H. The reduction of [p] modulo P is
not separable since [p]∗ωE = pωE ≡ 0 (mod P) [Si09, II.4.2c]. Hence

[p] = ψ ◦ Frobq

where Frobq : Ē → Ē is the Frobenius map given by (x, y) 7→ (xq, yq) and ψ is a
separable map [Si09, II.2.12].
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Lemma 2.2. Let P be a prime ideal of H lying over p such that E has good
reduction at P. Set p = P ∩K and suppose that pn is principal for some integer
n ≥ 1. Then there exists a unique element π ∈ OK such that pn = (π) and

[π] = FrobN(π).

Proof. If p splits or ramifies in K, then there exists a prime ideal p ⊂ OK of norm
p, not necessarily principal. Let n > 0 be an integer such that pn is principal. We
have a commutative diagram

E Eσp

Ē Ē(p)

λ

Frobp

Here σp = (p, H/K) is the Artin map, λ is an isogeny and the vertical maps are
reduction modulo P [Si94, II.5.3]. Our assumption pn is principal implies that
σnp = 1. Thus λn is an endomorphism of E, say λn = [π] for some π ∈ OK of norm
pn. We want to show that pn is generated by π. Following Silverman [Si94, II.5.4],
one can show that π̄ω̄E = 0 where π̄ is the reduction of π modulo P and ω̄E is a
generator of the vector space of differential forms on Ē. From this, we conclude
that π ≡ 0 (mod P). Therefore π ∈ p = P ∩K.

If p ramifies in OK , then we must have (π) = pn since their norms coincide and
p is the unique prime ideal over p. Now suppose that p splits in K. Then Ē is not
supersingular [La87, Chapter 13] and Ker([p]) is not trivial [Si09, V.3.1]. It follows
that π 6∈ p′ where p′ is the complex conjugate of p. Otherwise π will be an element
of (p) = pp′ and [π] cannot be purely inseparable. As a result we have π ∈ p \ p′
and N(π) = pn. Therefore (π) = pn.

If p remains prime in K then the curve Ē is supersingular [La87, Chapter 13].

If Ē is supersingular then the map [p] is purely inseparable [Si09, V.3.1]. Thus

[p] = ε ◦ Frobp2

for some ε ∈ Aut(Ē). If we can show that ε is the reduction modulo P of some
ε0 ∈ Aut(E) then we can replace [p] by ε−1

0 ◦ [p] and be done. It suffices to show
that ε commutes with the image of End(E) inside End(Ē) [Si94, II.5.2]. This can
be done by generalizing the proof given in Silverman [Si94, II.5.3]. In this case it
is obvious that pn = (pn) and π = ζpn for some ζ ∈ O∗K . �

Similar to the real cyclotomic case, we will use x-coordinates of a-torsion points
of E. We start with counting the elements in the set E[a]x = {x(P ) : P ∈ E[a]}.

Lemma 2.3. For any ideal a of OK , we have |E[a]x| = (N(a) +N(a + (2)))/2.

Proof. Two points P1 and P2 of an elliptic curve E : y2 = x3 + ax + b have the
same x-coordinate if and only if P1 = [±1]P2. Moreover P = [±1]P if and only if
P ∈ E[2]. Thus the number of elements in the set E[a]x is given by

|E[a]x| =
|E[a] \ E[a + (2)]|

2
+ |E[a + (2)]| = N(a)−N(a + (2))

2
+N(a + (2)).

�
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It is a well known fact that the ray class field of K of conductor a can be obtained
by torsion points on the elliptic curve E. More precisely we have

Ka = H(h(E[a]))

where h is a Weber function for E : y2 = x3 + ax+ b. It is defined by

h(P ) =

 x(P ) if ab 6= 0,
x(P )2 if b = 0,
x(P )3 if a = 0.

For details, see Lang [La87, Chapter 10].
Let E : y2 = x3 + ax + b be an elliptic curve defined over H with complex

multiplication by OK . Suppose that E has good reduction Ē at P, a prime ideal of
H lying over p. Then there exists a unique element π ∈ OK such that pn = (π) and

[π] = FrobN(π) by Lemma 2.2. For each integer m ≥ 1, the elements of E[πm ± 1]

belong to the number field L = H(E[π2m − 1]x). Note that L equals the ray
class field of K of conductor (π2m − 1) unless dK = −3,−4. Otherwise it is an
abelian extension of K containing the ray class field K(π2m−1) by Kummer theory
[Ne99, IV.3]. Let P be a prime ideal of L lying over P. The reduction of elements
E[πm±1]x modulo P gives all elements of P1(Fq) where Fq is a finite field of order
q = N(p)n. Then we have the following

Theorem 2.4. For each integer m ≥ 1,

P1(Fqm) = Ē[πm − 1]x ∪ Ē[πm + 1]x.

Proof. By Lemma 2.2, there exists π ∈ OK such that [π] = FrobN(π). Set q = N(π)

and β = πm. Let F̄β be the reduction of Fβ modulo P. Since we have Fβ(t) ≡ tN(β)

(mod P), there are precisely qm + 1 distinct solutions of F̄β(t) = t in P1(Fq). It
follows that Fβ(t) = t has qm + 1 distinct solutions on the Riemann sphere P1(C)
as well.

Given a point P ∈ E[β ± 1], we have [β]P = [±1]P . If follows that Fβ(x(P )) =
x(P ). We claim that the set of elements in P1(C) satisfying the equation Fβ(t) = t
is given by

E[β − 1]x ∪ E[β + 1]x.

To justify our claim, we show that this union has qm + 1 distinct elements. Note
that E[β − 1] ∩ E[β + 1] ⊆ E[2]. If b = (2, β − 1), then we see by Lemma 2.3 that
the number of elements in E[β − 1]x ∪ E[β + 1]x is given by

N(β − 1) +N(b)

2
+
N(β + 1) +N(b)

2
−N(b) =

N(β − 1) +N(β + 1)

2

Define w = (
√
dK + dK)/2 where dK is the discriminant of K. Then OK = Z[w]

for each K. There exist integers a, b such that β = aw + b. Moreover

N(β ± 1) = qm + 1± (adK + 2b).

This finishes the proof. �

Remark 2.5. It is a well known fact thatO∗K = {±1} unless dK = −3,−4. Observe
that E[πm − 1] ∪ E[πm + 1] = E[−πm − 1] ∪ E[−πm + 1]. Thus any generator of
pn can be chosen to be π if the discriminant of K is not −3 or −4.
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Example 2.6. In order to illustrate the situation in case dK = −3, consider the
elliptic curve E : y2 = x3 − 1 which has complex multiplication by Z[ζ6]. We want
to investigate F7 by using the torsion points of E. Let p = (ζ6−3), a prime ideal of
OK lying over p = 7. Since E(F7) = {O, (1, 0), (2, 0), (4, 0)}, we see that E(F7) ∼=
Z/2Z× Z/2Z. Observe that Ker([π − 1]) = E(F7) if [π] = Frobp. The only choice
of π such that N(π−1) = 4 is when π = (ζ6−3)ζ4

6 . By Theorem 2.4, the projective
space P1(F7) is given by the union Ē[π − 1]x ∪ Ē[π + 1]x for π = ±(ζ6 − 3)ζ4

6 .

The above theorem enables us to see the projective space P1(Fqm) as a union of
OK-modules where the module action is given by natural group operation on the
curve Ē. Now we investigate the value set VF̄α = {F̄α(x) : x ∈ P1(Fq)} using this
structure.

Corollary 2.7. Suppose that P1(Fqm) is given by Theorem 2.4. Define the integral
ideals

a− =
(πm − 1)

(α, πm − 1)
, a+ =

(πm + 1)

(α, πm + 1)

and define the constant

ξ =
N(a− + (2)) +N(a+ + (2))

2
−N(a− + a+).

Then VF̄α = Ē[a−]x ∪ Ē[a+]x and |VF̄α | = (N(a−) +N(a+))/2 + ξ.

Proof. The group homomorphism [α] : E[β]→ E[β] has kernel E[(α, β)]. Therefore
we have a surjection [α] : E[β]x � C1[(β)/(α, β)]x. Using Theorem 2.4, we conclude
that

VF̄α = Ē[a−]x ∪ Ē[a+]x.

Now we want to determine the size of this union. Since |A∪B| = |A|+ |B|−|A∩B|
for arbitrary sets A and B, we have

|VF̄α | = |E[a−]x|+ |E[a+]x| − |E[(a− + a+)]x|.
Applying Lemma 2.3, we obtain the formula for |VF̄α |. Note that ξ can take values
0, 1/2, 1 and 3/2 depending on a− and a+. See Example 2.9. �

The conditions for arbitrary functions of finite fields to be bijections are rather
complicated. However for the family of functions F̄α, we can give a sufficient and
necessary condition.

Corollary 2.8. Suppose that P1(Fqm) is given by Theorem 2.4. Then F̄α is a
bijection of P1(Fqm) if and only if (α, π2m − 1) = (1).

Proof. We see from the above corollary that F̄α is a bijection of P1(Fqm) if and
only if (α, πm − 1) = (1) and (α, πm + 1) = (1). This is possible if and only if
(α, π2m − 1) = (1). �

We finish this section by giving an example to illustrate our computations.

Example 2.9. Let K = Q(
√
−5) and let j = j(OK) be its j-invariant. Set

c = 27j/(j − 1728). Then the elliptic curve Ec : y2 = x3 − cx− 2c has the same j-
invariant [La87, Chapter 1]. Thus Ec has complex multiplication by OK = Z[

√
−5].

Under suitable transformations, the curve Ec is isomorphic over Q to the curve

E : y2 = x3 − (9
√

5 + 30)x+ (36
√

5 + 56).
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Consider p = 13 which remains prime in OK = Z[
√
−5]. Since π = ±13, we have

P1(F169) = Ē[12]x ∪ Ē[14]x. Here the elements of E[13 ± 1] are reduced modulo
P, a prime ideal of K(168) lying over 13. By the corollary above F̄α is a bijection

of P1(F169) if and only if (α, 168) = (1).
Observe that N(1+

√
−5) = 6 which divides 168. Therefore F̄α is not a bijection

if α = (1 +
√
−5)n for some integer n ≥ 1. We want to find the size of the value

set of F̄α by using the Corollary 2.7. Set p2 = (2, 1 +
√
−5) and p3 = (3, 1 +

√
−5)

which are ideals of norms 2 and 3 respectively. Then (2) = p2
2 and (3) = p3p

′
3

where p′3 is the complex conjugate of p3. See the following table for the invariants
of Corollary 2.7 specified to this example.

α 1 1 +
√
−5 (1 +

√
−5)2 (1 +

√
−5)3 (1 +

√
−5)4 · · ·

a− (12) (2)p2p
′
3 (2)p′3 p2p

′
3 p′3 · · ·

a+ (14) p2(7) (7) (7) (7) · · ·
ξ 0 1 3/2 1/2 0 · · ·
|VF̄α | 170 62 33 28 26 · · ·
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