Q11 Find the derivative of the following funcs. by sing the definition of the derivative:

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a)=\underset{\substack{\text { shepeo of }}}{m\left(l_{T}\right)} \\
& \text { the top. one } \\
& \lim _{h \rightarrow 0} \frac{\begin{array}{l}
1 / h=x-a \\
f(a+h)-f(a)
\end{array}}{h} \\
& \text { of } y=f(x) \\
& \text { at } x=a
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } f(x)=2 x^{2}+3 x+6 f(x) \\
& f^{\prime}(a)=\lim _{x \rightarrow a} \frac{\int\left(2 x^{2}+3 a+6\right)}{2 x^{2}+3 x+b-a}=\lim _{x \rightarrow a} \frac{2\left(x^{2}-a^{2}\right)+3(x-a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(x+a)(2(x+a)+3)}{x-a}=4 a+3 . \quad \therefore f^{\prime}(x)=4 x+3
\end{aligned}
$$

b) $f(x)=\frac{x}{x+1}$

$$
\begin{aligned}
& f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{\frac{x}{x+1}-\frac{a}{a+1}}{x-a}=\lim _{x \rightarrow a} \frac{\frac{x(a+1)-a(x+1)}{(x+1)(a+1)}}{x-a} \\
&=\lim _{x \rightarrow a} \frac{x+a x-a x-a}{(x+1)(a+1)(x-a)}=\lim _{x \rightarrow 0} \frac{x-a}{(x-a)(x+1)(a+1)}=\frac{1}{(a+1)^{2}} \\
& \therefore f^{\prime}(x)=\frac{1}{(x+1)^{2}} .
\end{aligned}
$$

Q2) Evaluate the following limits by interpreting each of then as a desvative:

$$
\begin{aligned}
& \text { a) } \\
& \left.\lim _{x \rightarrow 0} \frac{\cos x-1}{x}{\underset{j}{c}\left(\frac{(0)}{0}\right)}_{\lim _{x \rightarrow 0}} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)=-\sin x \right\rvert\, \\
& \text { Consider } f(x)=\cos x=0 \\
& f(0)=1
\end{aligned}
$$

b)

$$
\begin{aligned}
& f(0)=1 \\
& \lim _{x \rightarrow 2} \frac{\sqrt{4 x+1}-3}{x-2} \frac{\left[\frac{0}{0}\right]}{=\lim _{x \rightarrow 2}} \frac{f(x)-f(2)}{x-2}=f^{\prime} \\
& f(2)=3 \\
& -1 ., 121, \ldots, 1^{-1 / 2} \ldots=2 / 3
\end{aligned}
$$

(*) 「~।

$$
\left[f^{\prime}(x)=(\sqrt{4 x+1})=((4 x+1)-)=\frac{1}{2} \cdot(4 x+1) \cdot 4\right]
$$

$$
\begin{equation*}
\text { c) } \lim _{x \rightarrow 0} \frac{(\cos x-1) \sin x}{x^{2}}=\lim _{x \rightarrow 0}\left(\frac{\cos x-1}{x} \cdot \frac{\sin x}{x}\right) \tag{*}
\end{equation*}
$$

$\lim _{x \rightarrow 0} \frac{\cos x-1}{x-0} \int_{j_{a y}} \lim _{\substack{x \rightarrow 2}} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)=-\left.\sin x\right|_{x=0}=0$ sit t
say $\begin{aligned} & f(x)=\cos x \\ & f(0)=1\end{aligned}$

$$
f(0)=0
$$

As both limits exist, $(x)=\lim _{x \rightarrow 0} \frac{\cos x-1}{x-0} \cdot \lim _{x \rightarrow 0} \frac{\sin x}{x}=0.1=\frac{0}{3}$
d) $\lim _{x \rightarrow 1} \frac{x^{a}-1}{x-1} \quad$ exc!! $\quad a \in \mathbb{R}$

Q3) Show that f is constant on $\frac{1 /}{f}|f(x)-f(y)| \leqslant(x-y)^{2} \dot{\forall}_{x>\geq \in R}$
$\sqrt[5]{8} f(x) \leq \rho(x)$ \& then ore affiche $\Rightarrow f^{\prime}(x) \leq \rho^{\prime}(x)$

$$
\begin{aligned}
& (x) \leq \rho(x) \\
& f(x)=-\frac{1}{x} \\
& f(x)=153
\end{aligned}
$$

Given any $a \in D_{f}$,

$$
\begin{aligned}
& 0 \leqslant|f(x)-f(a)| \leqslant(x-a)^{2} \\
& \Rightarrow \quad 0 \leqslant\left|\frac{f(x)-f(a)}{x-a}\right| \leqslant\left|\frac{(x-a)^{2}}{x-a}\right|=|x-a| \\
& \hdashline
\end{aligned}
$$

By squeeze the, $\lim _{x \rightarrow a}|x-a|=0 \Longrightarrow \lim _{x \rightarrow a}\left|\frac{f(x)-f l a}{x-a}\right|=0$ The, $\lim _{x=a} \frac{f(x)-f(a)}{x-a}=0:=f^{\prime}(a)$.
So, $f^{\prime}(a)=0$ for all $a \in \mathbb{R}$. So, f is constant on its
Revere: $f^{\prime}(x)=0 \Rightarrow$ 灰 f is constant.

$$
f(x)=\left\{\begin{array}{lll}
1 & x \geq 0 \\
2 & x<0 & \Longrightarrow
\end{array} \quad f^{\prime}(x)=0 \quad \text { on } \quad R-\{0\}\right.
$$

Q4) Let f be defined as $f(x)= \begin{cases}\frac{x^{a} \sin \left(\frac{1}{x}\right)}{0} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
a) Deternume $a \in \mathbb{R}$ s.t. f is diffible at 0 .

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{a} \cdot \sin \left(\frac{1}{x}\right)}{x}=\lim _{x \rightarrow 0} x^{a-1} \cdot \operatorname{s-n}\left(\frac{1}{x}\right)
$$

$$
\text { If } a=1, \lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=\text { d. ..e. }
$$

If $a>1 \Rightarrow 0 \leq\left|x^{a-1} \cdot \sin \left(\frac{1}{x}\right)\right| \leq\left|x^{a-1}\right|$. By Squeete thr,

$$
\lim _{x \rightarrow 0}\left|x^{a-1}\right|=\lim _{x \rightarrow 0} 0=0 \Rightarrow \lim _{x \rightarrow 0}\left|x^{a-1} \cdot \operatorname{sen}\left(\frac{1}{x}\right)\right|=0
$$

So, $\lim _{x \rightarrow 0} x^{a-1} \cdot \sin \left(\frac{1}{x}\right)=0$

$$
\begin{aligned}
& \text { So, } \lim _{x \rightarrow 0} x^{a-1} \cdot \sin \left(\frac{1}{x}\right)=0 \\
& \text { If } a<1, \lim _{x \rightarrow 0} x^{a-1} \sin \left(\frac{1}{x}\right)=\lim _{x \rightarrow 0} \frac{\sin \left(\frac{1}{x}\right)}{x^{1-a}(x)}=\text { d.n.e. } \\
& \operatorname{lin}^{1-a}=0
\end{aligned}
$$

$$
(x)\left[\begin{array}{lc}
\lim _{x \rightarrow 0} \frac{\sin \left(\frac{1}{x}\right)}{x^{1-a}}=L \in \mathbb{R} . & \lim _{x \rightarrow 0} x^{1-a}=0 \\
\lim \left(\sin (1 / x)^{2} \cdot x^{\prime} / a\right)=0 \\
1-a>0
\end{array}\right.
$$

$$
\lim _{x \rightarrow 0}\left(\frac{\sin (1 / x)^{2}}{\left.\left.x /-a \cdot y^{2}\right)^{0}\right)=F}\right.
$$

$$
\lim _{x \rightarrow 0} " \sin \left(\frac{1}{x}\right)
$$

