From last week- Question $4^{\text {Thefunc. gives the greater in eger }}$ less then or equal to $x$
4. Let $\frac{f(x)=x-|x|}{\text { a. Sketch the }}$
a. Sketch the graph of $f$.
b. If $n$ is an integer
(i) $\lim _{x \rightarrow n^{-}} f(x)$
(ii) $\lim _{x \rightarrow n^{+}} f(x)$
c. For what values of $a$ does $\lim _{x \rightarrow a} f(x)$ exist?

$$
\begin{aligned}
& \text { Solution: } \\
& f(x)=x-\lfloor x\rfloor= \begin{cases}0 & \text { if } x \in z \\
x-a & \text { if } a<x<a+1 \\
\text { where } a \in z\end{cases} \\
& f(2)=2-\lfloor 2\rfloor=2-2=0 \\
& f(2.5)=2.5-\lfloor 2.5\rfloor=0.5
\end{aligned}
$$ $\lfloor x\rfloor=a$.

$\int\lfloor\stackrel{2}{x}\rfloor \rightarrow$ the greatest integer func.
© $a \in \mathbb{Z} \Rightarrow a \leq x \leq a+1\left|\begin{array}{l|l|l|}\left\lfloor\frac{e x}{\lfloor 4}\right\rfloor=4\end{array}\right| 2$

$$
\begin{aligned}
& \lfloor 4\rfloor=4 \\
& \lfloor-1.2\rfloor=-2
\end{aligned}
$$



$$
\begin{aligned}
& a<x\langle a+1 \\
& f(x)=x-\lfloor x\rfloor
\end{aligned} \Rightarrow f(x)=x-a>
$$

(A) if $a<0$ and $a \in \mathbb{L}$ :


Ex: $f(-3.4)=-3.4-.[-3.4\rfloor=-3.4+4=0.6$,


$$
0<x-a<1 \quad \overbrace{}^{i f} \times \text { is an inter }
$$

$$
f(x)=0
$$

$$
a<x<a+1
$$

$$
\begin{aligned}
& a<x<a+1 \\
& f(x)=x-\lfloor x\rfloor \Rightarrow f(x)=x-a \Rightarrow 0<x-a<1
\end{aligned}
$$

b):) $\lim _{x \rightarrow n^{-}} f(x)=1$
$\left.\begin{array}{c}\text { (nixon } \\ \text { indy }\end{array}\right)$

c) $\lim _{x \rightarrow b} f(x)$ (0for values of $b$ this limit exist?
from port $b$ : we con say that oas tl) $b \in \mathbb{Z}$ (integer)
a. n.. dan.. ant ovid
from port $b$ : we con say that 'if $b \in \mathbb{Z}$ (integer)

$$
\lim _{x \rightarrow b^{+}} f(x)=0 \neq \lim _{x \rightarrow b^{-}} f(x)=1 \Rightarrow \lim _{x \rightarrow a^{-}} f(x) \text { does not exist }
$$ when is on inter

(a022) if $b$ is not ${ }^{\text {an }}$ integer: $(a<b<a+1$ where ais aninker)

Therefore $\lim _{x \rightarrow b} f(x)$ exist only when $b \notin \mathbb{Z} \quad(b \in \mathbb{R}-\mathbb{U})$

From last week- Question 8

Solution:

From last week- Question 9
9. Evaluate

$$
\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{x+1}-\frac{x^{2}}{x-1}\right)
$$

$$
\begin{aligned}
& \text { Solution: } \\
& \lim _{x \rightarrow \infty} \frac{x^{2} \cdot(x-1)-x^{2} \cdot(x+1)}{(x-1)(x+1)}=\lim _{x \rightarrow \infty} \frac{x^{2}(x+1)}{x^{2}-1}=\lim _{x \rightarrow \infty} \frac{x^{2} \cdot(-2)}{x^{2}-1} \\
& \lim _{x \rightarrow \infty} \frac{x^{2} \cdot(-2)}{x^{2} \cdot\left(1-\frac{1}{x^{2}}\right)^{0}}=\frac{-2}{1}=-2
\end{aligned}
$$

## Recitation 03: Continuity

Topics to be covered: (Oct 26-30) 1.4 Continuity
1.5 The Formal Definition of Limit

Math 119 - Calculus with Analytic Geometry
Course webpage: http://ma119.math.metu.edu.tr/
(D) METU Mathematics Department

Gamzegül KARAHISARLI gamzegul@metu.edu.tr https://blog.metu.edu.tr/gamzegul/

## DEFINITION: (Continuity at an interior point)

We say that a function $f$ is continuous at an interior point $c$ of its domain if
$\lim _{x \rightarrow c} f(x)=f(c)$.
If either $\lim _{x \rightarrow c} f(x)$ fails to exist or it exists but is not equal to $f(c)$, then we will say that $f$ is discontinuous at $c$.

NOTE:
In graphical terms, $f$ is continuous at an interior point $c$ of its domain if its graph has no break in it at the point ( $\mathrm{c}, \mathrm{f}(\mathrm{c})$ ) ; in other words, if you can draw the graph through that point without lifting your pen from the paper.


DEFINITION: (Right and left continuity)
We say that $f$ is right continuous at $c$ if $\lim _{x \rightarrow c+} f(x)=f(c)$.
We say that $f$ is left continuous at $c$ if $\lim _{x \rightarrow c-} f(x)=f(c)$.

THEOREM:
Function $f$ is continuous at c if and only if it is both right continuous and left continuous at c .

- We say that $f$ is continuous at a left endpoint c of its domain if it is right continuous there.
- We say that $f$ is continuous at a right endpoint $c$ of its domain if it is left continuous there.


## DEFINITION: (Continuity on an interval)

We say that function $f$ is continuous on the interval $I$ if it is continuous at each point of $I$. In particular, we will say that $f$ is a continuous function if $f$ is continuous at every point of its domain.

## NOTE:

The following functions are continuous wherever they are defined:
(a) all polynomials;
(b) all rational functions;
(c) all rational powers
(d) the sine, cosine, tangent, secant, cosecant, and cotangent functions
(e) the absolute value function.

## THEOREM: (The Max-Min Theorem)

If $f(x)$ is continuous on the closed. finite interval $[a, b]$, then there exist numbers $p$ and $q$ in $[a, b]$ such that for all $x$ in $[a, b]$,

$$
f(p) \leq f(x) \leq f(q) .
$$

Thus $f$ has the absolute minimum value $m=f(p)$, taken on at the point $p$, and the absolute maximum value $M=f(q)$, taken on at the point $q$.

THEOREM: (The Intermediate-Value Theorem)
If $f(x)$ is continuous on the interval $[a, b]$ and if $s$ is a number between $f(a)$ and $f(b)$, then there exists a number $c$ in $[a, b]$ such that $f(c)=s$.

## DEFINITION: (A formal definition of limit)

We say that $f(x)$ approaches the limit $L$ as $x$ approaches $a$, and we write

$$
\lim _{x \rightarrow a} f(x)=L,
$$

if the following condition is satisfied:
for every number $\epsilon>0$ there exists a number $\delta>0$, possibly depending on $\epsilon$, such that if $0<|x-a|<\delta$, then $x$ belongs to the domain of $f$ and

$$
|f(x)-L|<\epsilon .
$$

Recall: (continuity)
*) If $f$ is cont on $x=x_{0}$
(1) Find $m$ so that
is continuous for all $x$.

Solution:
-if $x<3$ : $g(x)=x-m$ is a poly. func. Therefore it is cont. On its domain.

Ex:
-if $x>3$ : $g(x)=1-m x$ is a poly func also.

$$
\begin{aligned}
& \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)\left(\begin{array}{l}
f\left(x_{0}\right) \\
\text { mustee } \\
\text { define }
\end{array}\right) \\
& \text { conticous } \\
& \text { out } x_{0}
\end{aligned}
$$

Therefore it is cont. on its domain
-if $x=3$ :

$$
\begin{aligned}
& \cdot g(3)=1-3 m \\
& \cdot \lim _{x \rightarrow 3^{-}} g(x)=\lim _{\substack{x \rightarrow 3^{-} \\
(x<3)}}(x-m)=3-m \\
& -\lim _{x \rightarrow 3^{+}} g(x)=\lim _{\substack{x \rightarrow 3^{+} \\
(x>3)}} 1-m x=1-3 m
\end{aligned}
$$



$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} g(x)=\lim _{x \rightarrow 3^{-}} g(x)-g(3) \\
& 1-3 m=3-m=1-3 m
\end{aligned}
$$

$$
\Rightarrow 2 m=-2
$$

$$
\Rightarrow m=-1
$$

Question 2

Assume that $f$ is a real-valued continuous function such that

$$
\lim _{x \rightarrow 0} f(x) \cos ^{2}\left(\frac{\pi}{x}\right)=0
$$

Find $f(0)$.

$$
\begin{aligned}
& 0 \leq \cos ^{2}\left(\frac{\pi}{x}\right) \leq 1 \\
& 0 \leq f(x) \cos ^{2}\left(\frac{\pi}{x}\right) \leq f(x) \\
& \text { We con not }
\end{aligned}
$$

We con not squeze the.

Solution: for any $x_{0} \in \mathbb{R}$
$\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$ since $f$ is a cont. func.

$$
\text { claim: } f(0)=0
$$

start with assumption.
We need to prove that. Assume that $f(0) \neq 0$. Therefore $f(0)=L \quad(L \neq 0)$, since we have $f(0) \neq 0$

$$
\begin{aligned}
& f(0)=L \quad(L \neq 0), \text { since we have } f(0) \neq 0 \\
& \lim _{x \rightarrow 0} \cos ^{2}\left(\frac{\pi}{x}\right)=\lim _{x \rightarrow 0} \frac{f(x) \cos ^{2}\left(\frac{\pi}{x}\right)}{f(x)}=\frac{\lim _{x \rightarrow 0} f(x) \cos ^{2}\left(\frac{\pi}{x}\right)}{\lim _{x \rightarrow 0} f(x)}=\frac{0}{L}=0 \\
& \text { and } \lim f(x)=f(0)=L \neq 0
\end{aligned}
$$

Since, $\lim _{x \rightarrow 0} f(x) \cos ^{2}\left(\frac{\pi}{x}\right)=0$ and $\lim _{x \rightarrow 0} f(x)=f(0)=L \neq 0$
We find that: $\lim _{x \rightarrow 0} \cos ^{2}\left(\frac{\pi}{x}\right)=0 \quad$ BUT
$\cos \left(\frac{1}{x}\right)$
$\lim _{x \rightarrow 0} \cos ^{2}\left(\frac{\pi}{x}\right)$ Does not Exist!
We hove a contradiction $\downarrow$ Assumption is wrong!

$$
\begin{equation*}
f(0)=0 \tag{园}
\end{equation*}
$$

why sq. does not work?
(1) $\quad g(x) \leq \widetilde{f(x)} \leq h^{\hat{\gamma}}(x)$
(2) $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L$

Question 3
29 Ekim 2020 Perşembe

Solution:
Define $f(x)=x^{2}+\cos (\pi x)$ of is cont on $\mathbb{R}$. Since it is an addition of a polys. fund and trigonometric func. (We know poly and trig. are)
His cont on $[0,2]$ also.

Recall: (IVT $\rightarrow$ contionty) If $f(x)$ is a cont on $[a, b]$ $d$ is between $f(a)$ and $f(b)$ then $\exists c \in(a, b)$ sit $f(c)=\alpha$.


$$
f(0)=1 \text { and } f(2)=4+1=5
$$

$$
\text { By IUT, } \exists a \in(0,2) \text { s.t } f(a)=a^{2}+\cos (\pi a)=4
$$

Ind una: $\quad f(x)=x^{2}+\cos (\pi x)-4$
$G$ fund has at least one root.

$$
\begin{aligned}
& \text { fund has at least one } \\
& \begin{array}{ll}
y & f(a)<0 \quad f(b)>0
\end{array} \quad \exists c \in(a, b)
\end{aligned}
$$

Question 4

Show that the following equation has at least two solutions.

$$
\cos (x)=x^{2}-1
$$

Solution:
Define $f(x)=\cos (x)-x^{2}+1$.
$f$ is cont on $\mathbb{R}$. Since it is on addition of poly. and trigonometric func.
It is cont on $\left[-\frac{\pi}{2}, 0\right]$ and $\left[0, \frac{\pi}{2}\right]$ also.

$$
\left.f\left(-\frac{\pi}{2}\right)=-\frac{\pi^{2}}{4}+1<0\right\rangle \text { By juT } f c_{2} \in\left(-\frac{\pi}{2}, 0\right)
$$

$f(0)=2>0 \longrightarrow$ By IUT $\exists c_{1} \in\left(0, \frac{\pi}{2}\right)$

$$
f\left(\frac{\pi}{2}\right)=-\frac{\pi^{2}}{4}+1<0 \text { sit } f(c 1)=0
$$



Since $\left(-\frac{\pi}{2}, 0\right)$ and $\left(0, \frac{\pi}{2}\right)$ are disjoint, func has at least two costs.

Question 5
(4) Use the formal definition of the limit to verify the following:
(a) $\lim _{x \rightarrow c}\left(\frac{\mathbf{f}(\boldsymbol{x})}{(a x+b)}=\stackrel{\text { L }}{a c+b}\right.$ for any $a, b, c \in \mathbb{R}$.
(b) $\lim _{x \rightarrow 2} \frac{x-2}{1+x^{2}}=0$
(c) $\lim _{x \rightarrow 3} \sqrt{2 x+3}=3$

( $\varepsilon-\delta$ def)
Recall: (Formal defn of limit) for a given $\varepsilon>0$. There exist $7 \delta>0$ st

* (<you need cove a $s$. salify)
$0<\left|x-x_{0}\right|<\delta$ implies that

$$
|f(x)-L|<\varepsilon
$$

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

Solution:
a) $\lim _{x \rightarrow c} a x+b=a c+b$ for any $a, b, c \in \mathbb{R}$.
$\left\{\right.$ for an $\varepsilon>0$. choose $\delta=\frac{\varepsilon}{|a|}(a \neq 0)$ st.

$$
(0<|x-c|<\delta \text { implies } \quad \underbrace{|a x+b-(a c+b)|}_{!}<\varepsilon \text {. }
$$

Let's consider

$$
\begin{aligned}
& \text { Let's consider } \\
& |a x+b-(a c+b)| \\
& 1 a x-a c|=|a \cdot(x-c)|=|a| \cdot \overbrace{\left\langle\frac{|x-c|}{|a|}\right.}^{\text {立 }}
\end{aligned}
$$

- if $a=0$ : every $\delta$ works. Since $|a x+b-(a c+b)|=0<\varepsilon$
- if $a \neq 0$ : choose $\delta=\frac{\varepsilon}{|a|}$
b) $\lim _{x \rightarrow 2} \frac{x-2}{1+x^{2}}=0$
for a given $270, \nexists \delta>0$ set $0<\left|x-x_{0}\right|<\delta$ implies $|\dot{f}(x)-L|<\varepsilon$
for any $\varepsilon>0$, choose $\delta=\varepsilon^{\left(\frac{\xi}{2}, \frac{\varepsilon}{3}\right.}$ sit
$0<|x-2|<\delta$ implies $\quad\left|\frac{x-2}{1+x^{2}}-0\right|<\varepsilon$

Let's consider

$$
\binom{x^{2} \geq 0}{x^{2}+1 \geq 1}
$$

Let's consider

$$
\overbrace{\left|\frac{x-2}{1+x^{2}}\right|}^{\text {Let's }} \text { consider }=\frac{|x-2|}{x^{2}+1} \leqslant|x-2|<\delta \leqslant \dot{\varepsilon}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
x^{2} \geq 0 \\
x^{2}+1 \geq 1 \\
\frac{1}{x^{2}+1} \leq 1
\end{array}\right) \\
& \frac{|x-2|}{x^{2}+1} \leq|x-2|
\end{aligned}
$$

choose $\delta \leq \varepsilon$
c) $\lim _{x \rightarrow 3} \sqrt{2 x+3}=3$
for any $\varepsilon>0$ : choose $\delta=\frac{3 \varepsilon}{2} \quad$ s.t
$0<|x-3|<\delta$ implies $\quad \underbrace{|\sqrt{2 x+3}-3|}<\varepsilon$

$$
\begin{aligned}
& \text { Let's consider } \\
& \begin{aligned}
|\sqrt{2 x+3}-3| & =\frac{|(\sqrt{2 x+3}-3)(\sqrt{2 x+3}+3)|}{|\sqrt{2 x+3}+3|}=\frac{\mid \overbrace{2 x+3-9 \mid}^{2 x-6}}{\sqrt{2 x+3}+3} \\
& =\frac{2 \cdot|x-3|}{\sqrt{2 x+3}+3} \leqslant \frac{2}{3} \cdot|x-3|
\end{aligned} \quad\left(\begin{array}{l}
\sqrt{2 x+3}+3 \geq 3 \\
\frac{2}{\sqrt{\cdots}+3} \leqslant \frac{x}{3}
\end{array}\right.
\end{aligned}
$$

choose $\delta \leqslant \frac{3 \varepsilon}{2}$ then $\leqslant \frac{2}{3} \cdot \frac{3 \varepsilon}{2}=\varepsilon$

